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STABILITYTHEORYOFNONLINEAROPERATIONALDIFFEREntIAL

EQUATIONSIN HILBERTSPACES

by

Chia-VenPao

Departmentof Mathematics

University of Pittsburgh

Abstract

The object of this research is to establish some criteria for

the existence, uniqueness, stability, asymptotic stability and stability

region of a solution of the linear or nonlinear, time-invariant or time-

varying operational differential equations (i.e., equations of evolution)

in Banach spaces and _n }_ilbert spaces, from which criteria for the same

results regarding a solution of the corresponding type of partial or

ordinary differential equations can be deduced. In the linear case,

semi-scalar nroduct on a Banach space and linear semi-groun theory are

used; in the nonlinear case, equivalent inner product on a Uilbert snace

and the concept of nonlinear semi-group are introduced.



SUMMARY

The object of this dissertation is to establish somecriteria

for the'existence, uniqueness, stability, asymntotic stability and

stability region of a solution of the linear or nonlinear, tlme-

invarlant or time-varvin_ operational _If_e _=I _=_iu,_= t_ -

eauatlons of evolution) of the form

dx(t) = A(t)x(t) (t > 0)dt =

in Banachspaces and in Hilbert spaces, from which criteria for the

sameres_11tsof a solution of the corresponding tv_e of _artial differ-

ential eauations can be deduced. In the case of linear time-invariant

equations of evolution, linear semi-grou_ theory is used; and by the

introduction of an eauivalent semi-scalar product on a Banachspace,

necessary and sufficient conditions on the linear operator A(t) _ A for

the _eneration of a semi-_roun in a real Banachspace are obtained. By

using the semi-grou_ property, the existence, uniqueness, stability or

asymptotic stability of a stron_ solution can Be ensured. In the case

of nonlinear time-invariant equations, the conce_t of nonlinear semi-

_rouDis introduced. Basedon someproperties of a monotoneoperator

(or, a dissipative operator in the terminology of this dissertation)_

necessary and sufficient conditions on the nonlinear operator A(t) _ A

for the generation of a nonlinear semi-_rou_ in a complexHilbert s_ace

are established, from which the existence, uniquenessand stability or

asymptotic stability of a weak solution _re _uaranteed by the nonlinear

semi-group property. The introduction of an equivalent inner product

in a complexHilbert space makesit possible to develop a stability theory



in terms of a Lyanunovfunctional which is defined through a defininK

sesquilinear functional. It is shownthat sucha functioDal defines an

equivalent inner product and that the existence and stability proDertv

of a weaksolution are invariant under eauivalent inner products. In

case of a Banachsnace, the deflnin_ sesquilinear functional is replaced

by an equivalent semi-scalar product. The investigation of the existence,

uniquenessand stability of weaksolutions is extended to nonlinear time-

varying operational differential equations. Un4er someadditional res-

trictions on the nonlinear operator A(t) which is time-dependent, criteria

for the existence, uniqueness, stahillty or asymptotic stability of a weak

solution for the _eneral nonlinear time-varying equation of evolution in

a complexHilbert space are obtained. Several special types of nonlinear

e_uations which are moresuitable for a class of nonlinear partial differ-

ential equations are deducedwith particular attention on the class of

nonlinear nonstationary equations of the form

dx(t) = Ax(t) + f(t,x(t)) (t > 0)dt =

where A is a linear or nonlinear tlme-inde_endent onerator maDnin_part

of a real Hilbert space H into itself and f is a _iven (in _eneral

nonlinear) function defined on R+x N into H. Apnlications are _iven .

to a class of secondorder n-dimensional parabollc-elllptic tvne of

partial differential equations with a detailed descrintlon of the formu-

lation of an abstract operator havin_ the desired nro9ertv from a partial

differential operator.



I. INTRODUCTION

• In the year of 1892, A. M. Lyapunov[16]* published in Russian

his famousmemoireon the stability of motion which originally received

very little attention. About forty years later, the work in Lyapunov

stability theory was resumedby someSoviet mathematicians and since

'Iv C .__then the so called _e ond method" or "direct method" of Lyapunov has

been widely used as a mathematical tool in the investigation of linear

and nonlinear stability problems governed by ordinary differential equa-

tions. The "direct method" of Lyapunov consists of a means for answering

the question of stability of differential equations from the given form

of the equations, including the boundary conditions, without explicit

knowledge of the solutions. The central problem of the direct method

in the investigation of stability of ordinary differential equations is

the construction of a "Lyapunov function" v(x) having the property that

v(x) > 0 for x in a finite dimensional space and the derivative of v(x)

along solutions of the given equation is negative. The development of

the Lyapunov method has been moved toward the investigation of partial

differential equations in recent years. This advance seems to be natural

since many physical problems can be best described or must be represented

by partial differential equations. It is also natural that the idea of

constructing a Lyapunov function in finite dimensional spaces is extended

to .the construction of a "Lyapunov functional" in infinite dimensional

spaces. This extension leads to the use of function spaces on which a

topology can be defined. A first step toward applying the Lyapunov direct

method to partial differential equations was the study of a denumerably

*Numbers in brackets designate references at the end of this dissertation.



infinite system of ordinary differential equations (e.g., see Massera [17]).

A general stability theory by using a scalar functional wasestablished

by Zubov [24] who considered equations of the form

_u
_U(t,x)_t = f(x, u, _). (I-1)

However, the existence of solutions of (1-1) was proved only for the case

when f is linear in 3u/_x and for the general form of (I-1), the exist-

ence of solutions was assumed. Moreover, the requirement that the system

of partial differential equations define a dynamical system (i.e., the

solutions possess the group property) excludes a large class of differen-

tial equations whose solutions possess only the seml-group property. Since

the stability problem of partial differential equations occurs in many

fields of science such as reactor physics, control process, fluid mechanics,

chemical process, etc. the study of stability behavior of solutions to

partial differential equations has been accelerated by engineers, physicists

and mathematicians in recent years as can be seen from a literature survey

made by Wang [22]. Uowever, most of _be work listed in [22] deal with a

specific partial differential operator, and in some of them the existence

of a solution is either assumed or not mentioned. On the other hand, there

are many works in the area of partial differential e_uations and in particu-

lar those works on operational differential e_uations (i.e., equations of

evolution) in which only the existence and unioueness are discussed. It

should be mentioned that in some Russian literature, the stability problem

of semi-linear operational differential eauatlons has been investigated. _

Some earlier literature by Khalilov and Domshlak are described in a survey

book edited by Gamkrelidze [7] in which numerous references concerning

operational differential equations are also given. In the study of periodic



solutions of the semi-linear operational differential equations of the form

dx(t) = Ax(t) + F(t, p, X) (1-2)
dt

Taam [20] also investigated the stability properties of solutions to

(1-2)." He assumed A either as a bounded linear operator or as the

infinitesimal generator of a seml-group and established criteria for the

existence and the asymptotic stability of a periodic solution.

A. Recent Developments on Linear Equations

The difficulty of the direct extension from ordinary differential

equations into partial differential equations by the Lyapunov direct

method lies in the fact that the existence of a solution to a given

partial differential equation must first be established because to

ensure the stability of a solution the derivative of the "Lyapunov func-

tional" is taken along the solutions of the given equation. More recently,

in the study of stability problem of a system of linear partial differ-

ential equations, Buis [3] applied the semi-group and group theory to

operational differential equations of the form

dx(t) = Ax(t) (I-3)
dt

where A, which may be considered as an extension of a partial differential

operator, is a linear operator with domain and range both in a real Hilbert

space. By using seml-group or group theory, the solutions of (1-3) can

be _epresented by a seml-group or a group in the sense that if a solution

of (1-3) with initial condition xED(A) (the domain of A) is denoted by

_(t,x), then under suitable conditions the operator A generates a semi-

group _t; t _ O} or a group {Tt; - _ < t < _} of bounded linear opera-

tors such that the solution of (1-3) exists and is given by

_(t,x) = Ttx (t _ 0)

,6



for any xE_(A). Thus the stability property of solutions to (1-3) is

related to the property of the semi-group or group generated by A.

Based on the known properties of the semi-group or group, Buis established

sufficient conditions for A to generate a negative semi-group (of class

C ) and necessary and sufficient conditions for A to generate a negative
o

group (see definitions 111-9 and III-i0) so that a solution of (1-3)

exists and is asymptotically stable. All these conditions refer to the

existence of a Lyapunov functional which is defined through a symmetric

bilinear form. Following the same idea as in [3], Vogt, Buis and Eisen

[21] considered a closed linear operator from a Banach space into itself

and established the necessary and sufficient conditions for A to generate

a negative group by using a seml-scaiar product. Their results are, in

fact, an extension of [3] for the case of a group from a Hilbert space

into a Banach space.

B. Nonlinear Operational Differential Equations

In recent years, most of the investigations of differential equa-

tions (both ordinary and partial) are centered on nonlinear equations.

This is perhaps due to the fact that many physical problems must be formu-

lated by nonlinear differential equations as well as that nonlinear equa-

tions possess many properties of theoretical interest. In the case of

operational differential equations, many results on the existence and

uniqueness of semi-llnear equations of the form similar to (1-2) have

been established (e.g., see Browder [i], Kato [9]). Just recently (1967),

Komura [13] studied an equation of evolution of the form

dx_ = Ax(t) (t $ O) (1-4)
dt



whereA is, in general, a nonlinear operator with domainand range

in a Hilbert space H and x(t) is a vector-valued function defined on

R+ = [0_ _) to H. In his work, a general theory for nonlinear semi-

groups of contraction operators in a Hilbert space is developed. How-

ever, K_mura considered A of (I-4) as a multl-valued operator which

makes his theory rather complicated. Motivated by the work in [13],

Kato [ii] refined and extended considerably K_mura's results by con-

sidering a slngle-valued operator A(t) with domain and range both in a

Banach space X where the operator A of (I-4) is also extended to A(t)

which depends on the variable t. Following [13] and [ii], Browder [2]

further extended (in some sense), among others, Kato's results by includ-

ing an additional function f(t,x) on the right of (I-4) with the sim-

plification that the underlying space X is a real Banach space. All

the above works are mainly concerned with the existence and uniqueness

of solutions.

C. Area for Extension and New Development

It is seen in [3] that necessary and sufficient conditions for

the operator A in (I-3) to generate a negative group (of class Co) , and

that sufficient conditions for A to generate a seml-group were established

by assuming the existence of a Lyapunov functional. Conversely, if A

generates an equibounded or negative seml-group, is it possible to construct

a Lgapunov functional as in the case for a group? Since the extension in

[21] to a real Banach space of the above mentioned results in [3] was

accomplished only for the case of a group, the investigation for a similar

extension for a seml-group is also necessary. On the other hand, the class



of nonlinear differential equations, either tlme-lnvarlant or time- "

varying, are more important from both the applications and the theoretical

points of view. All of these .eed further investigation. The intro-

duction of the concept of nonlinear seml-groups opens a new road to the

problem of nonlinear operational differential equations. The importance

of the study of the stability problem by using the seml-group or non-

linear semi-group theory lles in the fact that the important problem of

establishing the existence of a solution is an intrinsic part of the theory

developed.



II. STATEMENT OF PROBLEM

Many systems of partial differential equations can be
4

written in the form of

_u(tpx) = Lu(t,x) XE_, t > 0 (II-i)

where u(t,x) is an m-vector function and L is a matrix whose elements

are linear or nonlinear partial differential operators defined on a

subset _ of an n-dlmenslonal Euclidean space Rn. In more general

cases, the coefficients of the elements in L are both space and time

dependent (linear or nonlinear). To specify solutions to the equation

(II-i), a set of boundary conditions are given which can be put into

the form

B u(t,x') = 0 X'E_, (11-2)

where B is a matrix whose elements are linear or nonlinear partial

differential operators and B_ is the boundary of _. In addition, an

initial condition is given as

u(O,X) = u (X) (11-3)
o

where Uo(X) is a given space-dependent function_ If all the elements

of L and B are linear differential operators, (II-I) and (11-2) can be

reduced to the form

dx(t) = Ax(t) (11-4)
dt

where x(t) is a vector-valued function (in the sense of a linear function

space) defined on R+ to a suitable Banach space or Hilbert space X and A

is a (in general unbounded) linear operator from part of X to X; if one

or more elements of L or B is nonlinear, then A is a nonlinear operator

from part of X to X; in case one or more elements of L or B is space-

time dependent, the systems (II-i) and (11-2) are reduced to the form

10



(II-4) with A replaced by A(t) which is a linear or nonlinear operator

depending on t. In all cases, (If-l) and (II-2) can be considered as

special cases of abstract operational differential equations which can

be parabolic equations and certain hyperbolic eauatlons,etc. The object

of this research is to establish some stability criteria which intrinsically

include the existence and uniqueness of solutions for the types of differ-

ential equations described above in an abstract setting, from which the be-

harbors of the corresponding type of partial differential equations can be

deduced. The first two sections in the following introduce the types of

operational differential equations (i.e., equations of evolution) to be

investigated and the final section summarizes the results obtained in this

investigation.

A. Linear Time-invariant Differential Equations

It has been seen in Chapter I that by using the semi-group or

g_oup theory, a Lyapunov stability theory for the linear operational differ-

ential equations of the form (II-4) in a real Hilbert space was established

in [3]. There, a Lyapunov functional is defined through a symmetZic bilinear

functional. The main results concerning the equation of the form (II-4) is

that if the domain of A is dense in H and the range of (I-A) is H (I is the

identity operator) then A is the infinitesimal generator of a negative semi-

group (of class Co) if there exists a Lyapunov functional satisfying certain

properties and it is the infinitesimal generator of a negative group (of class

C O ) if and only if there exists a Lyapunov functional satisfying some addi-

tional properties. Unlike a group, however, a semi-group lacks the property

of having a lower bound (in some sense) which makes the construction of a

Lyapunov functional through a bilinear functional rather difficult.



Becauseof this difficulty the results given in [3] for the case

of a semi-group do not parallel the case of a group, that is, the necessary

condition for the existence of a Lyapunov functional having the desired

property is not shown. To overcome this, an equivalent seml-scalar pro-

duct is introduced. If the operator A in (11-4) is the infinitesimal

generator of an equlbounded or negative semi-group, a Lyapunov functional

can be constructed through an equivalent seml-scalar product which gives

the converse statement in [3] as described above. Moreover, by using the

same idea in defining a Lyapunov functional, necessary and sufficient con-

ditions for A to generate an equlbounded or negative seml-group in the

case of a real Banach space can also be established. This later extension

to a Banach space is in analogy to the one in [21] for the case of a group.

It is seen that with these additional extensions, the stability study of

linear operational differential equation (11-4) by using seml-group or

group theory would be, in a sense, completed (there is no difficulty in

extending the above results to complex spaces).

B. Development of Nonlinear Operational Differential Equations

Owing to the importance of nonlinear differential equations in

both pure theory and its applications, the investigation of the nonlinear

operational differential equations is the main concern of this disserta-

tion. The first stage in the development of nonlinear operational differ-

ential equations is to study the equations of evolution of the form

= Ax(t) (t > O) (II-5)
dt =

where x(t) is a vector-valued function defined on R+ = [0, -) to a Hilbert

space H (in general, H is a complex Hilbert space) and A is a nonlinear

operator (which is independent of t) with domain and range both in H.

12



Based on the results obtained by Kato in [ii] in which the operator (-A)

is assumed to be monotone (i.e., A is dissipative in the terminology of

this dissertation) and by using the nonlinear semi-group property, a

stability theory as well as the extence and uniqueness theory for the

equation (11-5) can be developed. Moreover, by introducing an equivalent

inner product, the same results hold if the operator A is dissipative with

respect to this equivalent inner product. This fact motivates the con-

struction of a Lyapunov functional through a sesquilinear functional which

under some additional conditions defines an equivalent inner product. Thus

a stability criteria can be established through the construction of a

Lyapunov functional.

As a special case of (11-5), the semi-linear equations of evolu-

tion of the form

dx(t) = A x(t) + f(x(t)) (t > 0) (11-6)
dt o =

is discussed to some extent where A is an unbounded linear operator with
o

domain and range both in a real Hilbert space H and f is a (nonlinear) func-

tion defined on H into H. The purpose of doing this is that by utilizing

the results established on the linear equation (11-4) (i.e., for f(x) E 0

in (11-6)), the existence, uniqueness and stability or asymptotic stability

of a solution to (11-6) can be ensured by imposln_ some additional conditions

on the function f. Notice that (11-6) is a direct extension of the linear

equation (11-4).

In case the elements of the partial differential operator L in

(II-i) or the elements of B in the boundary conditions (11-2) possess

time-dependent coefficients, equation (11-5) is not suitable as an abstract

extension for this type of partial differential equation. The second stage

13



in the development is to extend equation (11-5) to a more general type

of operational differential equation of the form

dx(t_ = A(t)x(t) (t > O)
dt =

where A(t) is, for each t _ O, a nonlinear operator with domain and

range both contained in a llilbert space H. It is seen that this exten-

sion is a further advance in the generalization of nonlinear equations

of evolution. In parallel to the case of the equation (11-4), criteria

for the existence, uniqueness, stability and, in particular, asymptotic

stability of a solution as well as the stability reRion are established.

The concept of equivalent inner product is similarly introduced, and it

is shown that stability property remains unchanged under equivalent inner

product.

(11-7)

(11-9)

In the case of semi-linear equations of the form

dx(t_____)= A (t)x(t) + f(t,x(t)) (t > 0) (11-8)
dt o =

where Ao(t) is, for each t _ 0, a linear unbounded operator with domain

and range both in H and f is a (nonlinear) function defined on R+X H into

H, stability criteria are deduced from the results for the general equation

(11-7). For the sake of applications as well as theoretical interest in

certain partial differential equations which occur often in physical prob-

lems, some special equations of (11-7) are included. These equations can

be written in the general form

dx(t) = Ax(t) + f(t,x(t)) (t > 0)
dt =

where A, which is independent of t, is a linear or nonlinear operator

with domain and range both in a real Hilbert space H and f is a (nonlinear)

function defined on R+x H into H. The idea for considering equations of

the form (11-9) is to transform and to simplify the conditions imposed on

14



the general operator A(t) into the conditions on A and on f so that

the existence, uniqueness and stability or asymptotic stability of a

solution as well as the stability region can be guaranteed. In case

A is linear and is the infinitesimal generator of a semi-group of

class Co or is a self-adJoint operator, the results are particularly

suitable for applications to certain partial differential equations.

When A is a bounded operator on H into H, (11-9) can be put into the

form

dx(t)= f(t,x(t)) (t > 0) (ll-lO)
A_

which is, in fact, an ordinary differential equation. Criteria for

the existence and stability of a solution are also given for this case.

C. Summary of Results and Contributions to the Problem

The object of this research is to establish a stability theory

so that a solution of a given operational differential equation (i.e.,

equation of evolution) not only exists and is unique but also is stable

or asymptotically stable. This given operational differential equation

is, in general, an abstract generalization of a class of partial differ-

ential equations such as heat conduction equations and wave e_uations etc,.

The contribution of this dissertation is the establishment of criteria

for the existence, uniqueness, stability, asymptotic stability and stab-

ility region of a solution on several types of nonlinear (including

linear) operational differential equations. This contribution can be

stated as four stages which are discussed in chapters IV, V, VI and

VII respectively. The results obtained in these chapters are summarized

as follows:

15



(a) In chapter IV, the central idea is to show the existence

of a Lyapunov functional and to show the necessary and sufficient

conditions for the operator A to generate an equibounded or negative

semi-group in a Banach space from which the existence and stability or

asymptotic stability of a solution are ensured. This is done in

theorems IV-7, IV-8, IV-If, IV-12 and IV-13.

(b) The central idea in chapter V is to establish a stability

theory for nonlinear operational differential eouations by extending the

theory of linear semi-groups to nonlinear semi-grou_s with the hope that

this theory can be applied to some nonlinear partial differential eouations.

Results on general nonlinear equations are given in theorems V-2 through

V-9 and on semi-linear equations are given in theorems V-If, V-12, V-15,

V-16 and V-17.

(c) The object in chapter VI is to extend the stability theory

for time-invariant nonlinear equations in chapter V to time-varying

nonlinear equations with the hope that this theory might be used for a

larger class of non-stationary partial differential equations. Parti-

cular attention has been given to several special cases which are easier

to apply for certain partial differential equations. Results on _eneral

nonlinear equations are given in theorems VI-2 through VI-5, those on

nonlinear nonstationary equations are given in theorems VI-6 and VI-7

and those on semi-linear equations are given in theorems VI-8, VI-9,

VI-13, VI-14 and VI-15.

(d) Finally, the applications of the results developed for

operational differential eouations to partial differential equations

are given in chapter VII in which stability criteria for a class of

parabolic-elliptic partial differential equations are established and

are given in theorems VII-2, VII-4 and VII-6.

16



It is seen from this summarythat the results of this disser-

tation cover several types of differential equations, and to the

knowledge of this authorj most of the above results on the part of

stabiilty theory have not been previously shown. It is thought that

these results contribute to the stability theory of operational differ-

ential equations as well as of partial differential e_uatlons.

17



III. A PRELIMINARY ON FUNCTIONAL ANALYSIS

Because of the importance of functional analysis in the study

of operational differential equations (i.e., equations of evolution),

it is desirable to give some of the basic definitions and properties

_ ........... _ 4- _ .... _I .. ly - diffL--=L w_±_ be u_=u _, L-= =_=u_ity and sis uf operational erential

equations. The following sections give an outline of some of the

necessary topics. Proofs and further details may be found in most

standard books on this subject (for example, references [5], [8], [i0],

[12] and [23]), in particular, most of the materials in this chapter can

be found i_ [23].

A. Banach and Hilbert Spaces

A set X is called a linear space over a field K if the followin_

conditions are satisfied:

(i) X is an Abelian group (written additively);

(ii) A scalar multiplication is defined: to every element

x E X and each s e K there is associated an element of X, denoted by

a x, such that

(x+y) = ex + =y

@+8)x = _x + 8x

@S)x = =(Sx)

(s,e K; x,y e X),

(_,8 E K; x E X),

(O,8 _ K; x E X),

l'x = x (i is the unit element of the field K).

Let X be a linear space over the field of real or complex numbers. If

for every x e X, there is associated a real number l lxl I, the norm of

the vector x, such that for any _E K and any x,y e X
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(i)

(ii)

(iii)

tlxlt =>o, and Ilxll = 0

IIx+yll __<tJx[l + ]IYJl ,

ll - ll = llxll.

if and only if x = O,

Then the linear space X together with the norm tl'll is called a normed

linear space and is denoted by (X, If'If) or simply b 7 X. A sequence

{x } in a normed linear space X is called a Cauchv sequence if for any
n

> 0, there exists an integer N=N(E) > 0 such that llxm-Xnl I < E for

all m,n _ N. If every Cauchy sequence in X converges to an element x _ X,

the space is said to be a complete normed linear space or a Banach space

(or simply a B-space). The convergence is said to be a strong convergence

(or _o,,r,Lm convergence) _,,_Ais _u_=_gnate_. .. _,,_!im _..n_X as n..+ _ or simply hv

x ÷ x, X is said to be a real or a complex Banach space according to
n

whether the field K is the real or complex numbers. A complex linear

space is called a complex inner product space (or a pre-Hilbert space)

if there is defined on X x X a complex-valued function (x,y), called the

inner product of x and y, with the following properties:

(i) (x+y,z) = (x,z) + (y,z)

(ti) (x,y) = (y,x) (the bar denoting complex conjugate)

(iii) (ex,y) =e (x,y)

(iv) (x,x) _ 0, and (x,x) = 0 if and only if x = 0.

A real linear space is called a real inner product space if the properties

(i)-(iv) are satisfied except that (ii) is replaced by (x,y) = (y,x). By

defining IIxlI=(x,x) I/2, an inner product space is a normed linear space

and the norm is said to be induced by the inner product (.,.). The con-

verse is, in general, not true. However, if the norm in a normed linear
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space X (real or complex) satisfies the parallelogram law:

]Ix+Yll 2 + llx-Yll2 2(llxll 2+ IlYll 2) e= x,y X

then an inner product can be defined so that X is an inner product

space. If an inner product space H (real or complex) is complete with

respect to the norm induced by the inner product (.,.), it is called a

Hilbert space or an H-space and is denoted by (H, (.,.)) or simply by H.

H is called a real or complex Hilbert space if K is the field of real

or complex numbers respectively. A Hilbert space is a special Banach

space. By the properties of (i), (ii), (iii) of an inner product, it

is seen that an inner product is bilinear for a real Hilbert space and is

sesquilinear for a complex Hilbert space.

that:

(alx + a2y,z)= _l(x, z) + _2(y,z),

(X, gly + g2z) = gl(X,y) + _2(x,z)

The sesquilinearity means

@l,e2 e K, x,y,z e H)

(81,B 2 e K, x,y,z e If).

If BI and _2 in the above equality are replaced by 81 and 82 respectively,

the inner product is said to be bilinear.

Examples of Banach space and Hilbert space:

(i) (£P)p i =< p < _: The set of all seouences x = (Xl,X2,...)
OO

of complex numbers such that _ Ixi Ip < = constitutes a normed linear
i=l =

space (£P) by the norm llxll = (_ IxilP) I/p. (£P) is a Banach space;
i=l

in particular £2 is a Hilbert space with the inner product defined by

co

i_l -(x,y) = xiY i.

(2) LP(_), i < p < _: The set of all real valued (or complex-

valued) measurable functions f(x) defined a.e. (almost everywhere) on _,

where _ is an open subset of R n, such that Ix(s)I p is Lebesque integrable
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over _ constitutes a normed linear space LP(_); it is a linear space by

(f+_)(x) = f(x) + g(x) and (of) (x) = of(x)

and the norm is defined by

[[x[[ = ( f [f(x)[Pdx) I/p (dx=dXldXm...dXn).

LP(_) is a Banach space whose elements ate the classes of e_uivalent

th
p -power integrable functions. In particular, L2(_) is a Hilbert space

with the inner product defined by

(f,g) = /f(x) g-_x) dx.

Let X be a normed linear space. A point x E X is said to be a

limit point of a set D=X if there exists a sequence of distinct elements

{x }=D such that x + x as n _ =. The closure of a set D, denoted by D,
n n

is the set comprised _ n and _i I the i_. -_=.......... it points of D. A set D is s=±u

to be closed if D = D and is said to be dense in X if _ = X. I1ence if

D is closed and dense in X then D = X.

Definition III-i. Let X I = (X, II'IIi ), X 2 = (X, I I" I I2) where

X is a linear space. The two norms l l. III and If. If 2 are said to be

equivalent if there exist real numbers 6, y with 0 < _ __<y < _ such

that

IIxIl2 < llxll I < y Ilxll 2 for all x e X.

Thus, if X I is a Banach space so is X 2.

Definition 111-2. A normed linear space is uniformly convex if

for any E > 0, there exists a 6 = 6(e) > 0 such that l lxll < i, I lYll -< i

and I lx-yll > e implies Ilx+yll < 2(1-6).

A Hilbert space is uniformly convex, for by the parallelogram

law if I Ixll __<i, l lyll =< 1 and IIx-yll __>E then

llx+yll 2 = 211xll 2 + 211yll 2 - llx-yll 2 < 4-E 2

which implies that l lx+yll _< 2(1-6) for some 6 = _(e) > 0.
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B. Linear and Nonlinear Operators

Let X and Y be linear spaces on the same field of scalars K.

Let A be an operator (or function or mapping) which maps part of X

into Y. The domain of A, denoted by D(A), is the set of all x s X

such that there exists a y c Y for which Ax=y. The range of Ap denoted

by R(A), is the set {Ax; x e D(A)}. The null space (or kernel) of A is

N(A) = {x; Ax = 0}. If D(AI)= _(A2) and AlX = A2x for all x e D(AI) ,

then A 2 is called an extension of A 1 or A I is called a restriction of

A 2 and this is denoted by AI= A 2. If _(AI) = D(A2) and AlX = A2x for

all x e _(AI) , then A I = A 2. The operator A is called one-to-one if

distinct elements in D(A) are mapped into distinct elements of R(A)

and in this case, A is said to have an inverse and is denoted by A -I.

An operator A with domain _(A) a linear subspace of X and range R(A)

in Y is called linear if for all x,y e _(A) and all _,8 e K,

A(ex + By) = _Ax + BAy, and is called nonlinear if it is not linear.

A linear operator A is one-to-one if and only if N(A) = {0}.

If X and Y are normed linear spaces and T is a linear operator

with _(T)= X and range R(T)=Y, the following statements are equivalent:

(a) T is continuous on D(T), (b) T is bounded, i.e., there exists a

number M > 0 such that for all x e _(T), lITxll  ilxll(note that the

two norms of the inequality are, in general, not the same). If T is

bounded, the norm of T is defined by:

I IT{{ = sup( I ITxI{; I{x{{ _ 1, x e _(T)).

With this norm, the space of all bounded linear operators with domain

X and range in Y denoted by L(X,Y) is a normed linear space if we

define addition of operators and multiplication of operators by scalars
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in the natural way, namely

(T+S)x = Tx+Sx. (_T)x = _Tx T,S e L(X,Y) and x e X.

If, in addition, Y is a Banach space, so is L(X,Y).

Let X, Y be normed linear spaces on the same scalar field.

Then the product space X x Y is a normed linear space of all ordered

pairs {x,y} x e X, y e Y with addition and scalar multiplication defined

by

{Xl'Yl} + {x2'Y2} = {Xl + x2' Yl + Y2 }

_{x,y} = {_x, _y}

and with norm given by

II{x,y}ll = (llxll 2 + llyll2) l/2.

If X and Y are Banach spaces, so is X x Y. If T is a linear operator

with V(T)= X and R(T)=Y, the graph of T, G(T), is the set ({x,Tx};

x e Q(T)). Since T is linear, G(T) is a subspace of X x Y. A linear

operator T is said to be closedin X if the graph _(T) of T is closed

in X x Y. A useful criterion to test whether a linear operator is closed

is the following: A linear operator T is closed if and only if x e D(T),
n

x _ x, Tx + y imply x e _(T) and Tx = y. The above criterion is
n n

sometimes used as the definition of a closed operator. If T is closed

then the inverse T-I, if it exists, is closed. It is to be noted that

a continuous (or bounded) linear operator need not be closed and a closed

operator may be unbounded. However, if T is continuous and Y is a Banach

space, T has a unique extension _ to D(_) such that [[_[[ = I]T[[ and

is closed; if in addition, _(T) is dense in a Banach space X, then _ e L(X,Y).

The following theorem is known as the Banach Closed Graph Theorem.

Theorem III-i. A closed linear operator T defined on a Banach space

X into a Banach space Y is continuous.
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A linear operator T is said to be closable if there exists a

linear extension of T which is closed in X. When T is closable, there

is a closed operator _ with G(T) = _(T); T is called the closure of T

and is the smallest closed extension of T, in the sense that any closed

extension of T is also an extension of _. A linear operator T is closable

Q(T), x + 0 and Tx ÷ y imDlv that y=0. In suchif and only if xn n n

cases, the closure _ of T can be defined as follows: x e D(_) if and

only if there exists a sequence {x }= _(T) such that x +x and lim Tx = y
n n n_ _ n

exists; and we define _x = y. It can be shown that y is uniquely defined

by x and T is closed. Let X and Y be normed linear spaces on the same

scalar field and T be a one-to-one operator with _(T)=X and R(T)=Y.

The inverse of T is the map from _(T) into X given by T-I(Tx) = x. If

T is linear, then T-I is linear with domain R(T) and range D(T). T -I

exists and is continuous if and only if there exists an m > 0 such that

llrxll _ mllxll for x e V(T). If this is the case, lIT-Ill _ m -I. r -I

as closed if and only if T is closed.

Definition 111-3. Let H = (H,(.,.)) be a Hilbert space and S

be an operator with domain dense in H and range in H. The adjoint

operator of S, denoted by S*, is defined as follows: y E 11 is in the

domain of S* if and only if there exists a y* E H such that

(Sx,y) = (x,y*) for all x c _(S)

and we define S*y = y*. S* exists if and only if Q(S) is dense in }I

and in this case, S* is a closed linear operator. S is called symmetric

if S= S*, i.e., S* is an extension of S, and is called self-adjoint if

S=S*. Thus, a self-adjolnt operator is closed. S is said to be positive

definite if there exists a 6 > 0 such that

(Sx,x) _ 6!Ixll 2 for all x _ D(S).
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Let X and Y be normedlinear spaces. SupposeT is a linear

operator with domainX and range in Y. T is said to be completely

continuous (or compact) if, for each boundedseauence{x } in X,n

the sequence {Tx n} contains a subsequence converging to some limit

in Y. Compact operators possess many interesting properties (see, e.g.,

[23]). Since these properties are not needed in the present dis-

cussion of stability analysis we shall not state them here.

C. Linear Functionals_ Conjugate Spaces and Weak Convergence

A numerical function f(x) defined on a normed linear space X

is called a functional. A functional is said to be linear if for any

x,y e X and _,B e K (real or complex number field)

f(ex + By) = of(x) + _f(y);

and it is said to be continuous if for any E > 0 there exists a 6 > 0

such that

I Ix-Yl I < 6 implies If(x)-f(y) I < e.

f is said to be bounded if there exists a constant M such that

If<x)lMltxllforallx X

The following statements are equivalent: (a) f is continuous at any

fixed element Xoe X; (b) f is continuous on X; (c) f is uniformly

continuous on X; (d) f is bounded on X.

Let X,Y be normed linear spaces on the same scalar field of

real or complex numbers and let i(X,Y) be the class of all bounded

linear operators on X to Y. If Y is the real or complex number field

topologized in the usual way (i.e., the absolute value I_ I is taken as

the norm of _ in Y), L(X,Y) is called the conjugate space (or dual space
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or adjoint space) of X and is denotedby X*. ThusX* is the set of

all continuous linear functionals on X. The pairing betweenany

elementsx of X and f of X* is denotedby f(x) or by <x,f>. If we

define the normof f e X* by

l lfll =l_i_l_l if(x) i

then X* is a Banachspace. Note that X is not necessarily a Banach

space. For a given normedlinear space X, the existence of a non-

trivil continuous linear functional on X can be ensuredby the Hahn-

Banachextension theoremwhich is stated as follows for the case of

a normedlinear space.

Theorem 111-2 (Hahn-Banach theorem). Let X be a normed linear

space, M a linear subspace of X and f a continuous linear functional

defined on M. Then there exists a continuous linear functional F

defined on X such that F is an extension of f (i.e., F(x) = f(x) for

all x e M) with IIFII = llfII.

A direct consequence of the Hahn-Banach theorem is the followin_:

Theorem 111-3. Let X be a normed linear space and x # 0 be any
o

element of X. Then there exists a continuous linear functional f on X

such that f(Xo) = llXoll 2 and llfll = llXol I.

Corollary. If f(x) = 0 for every f e X* then x = O. In parti-

cular, if f(x) = f(y) for every f e X* then x = y.

In case X is a IIilbert space, X* can be identified with X as can

be seen from the Riesz representation theorem.

Theorem 111-4 (Riesz representation theorem). For any linear

functional f on a Hilbert space H = (H, (.,.)), there exists an element
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yf e H, uniquely determined by the functional f, such that

f(x) = (x,yf) for every x e H.

Moreover, llfll = IIyflI.

Corollary. Let H be a Hilbert space. Then the totality

of all bounded linear functionals H* on H constitutes also a Hilbert

space, and there is a norm-preserving, one-to-one corresDondence

f +-+ yf between H* and H.

It should be remarked here that by the correspondence in the

above corollary, H* may be identified with II as an abstract set; but

it is not allowed to identify, by this correspondence, H* with H as

linear spaces, since the correspondence f +-+ yf is conjugate linear:

(elfl + e 2f2 ) *-+ (_ lYfl + _2Yf2 )

where _i' e2 are complex numbers. However if we define the space H*

to be the set of all bounded semi-linear forms on H (i.e., by defining

(fl + f2 ) (x) = fl(x) + f2(x) and (_f)x = _f(x) for any x e H, f e H*

and _ e K, the complex field) then H can be identified with H* not

only as an abstract set but also as a linear space.

Let X be a normed linear space and X* its conjugate space.

The conjugate space of X*, denote by X**, is called the second con-

Ju_ate (or second dual or bidual) of X. Obviously, X** is a Banach

space. It can be shown that each x e X defines a continuous linear
o

functional fo(X*) on X* by fo(X*) = <x o,x*>. The mappin_

x +f -- Jx
o o o

of X into X** satisfies the conditions

J(x I + x2) = Jx I + Jx2, J(ax) = aJ(x), and I IJxll =I IxIl.

The mapping J is called the canonical mapping of X into X**.
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Definition 111-4. A normed linear space X is said to be

reflexive if X may be identified with its second dual X** by the

correspondence x +-_ Jx above.

In general, a Banach space X can be identified with only a

subspace of its second dual space X**. However, under the condition

of local compactness of X, it may be identified with X**. The

following theorem is important in view of its applications.

Theorem 111-5 (Eberlein-Shmulyan). A Banach space X is

reflexive if and only if every strongly bounded sequence of X

contains a subsequence which converges weakly to an element of X

(i.e., locally sequentially compact).

For a proof of the above theorem see, e.g., [23].

Theorem 111-6. A uniformly convex Banach space is reflexive.

In particular, a Hilbert space is reflexive.

It is known that, for i < p < _, the spaces L p and £P are

uniformly convex (see Clarkson [4]) and thus are reflexive.

In the development of stability theory in Chapters V and VI,

we have introduced the concept of equivalent inner product. The

following theorem which was formulated by P. Lax and A. N. Mil_ram

plays an important role in the construction of an equivalent inner

product.

Theorem 111-7 (Lax-Milgram). Let H be a Hilbert space. Let

V(x,y) be a complex-valued functional defined on the product space

H x H which satisfies the conditions:

(1) Sesqui-linearity, i.e.,

V(_IX I + a2x2,Y ) = _iV(Xl,Y) + _2V(x2,Y) and

V(x, Sly I + B2Y2) = 81V(X,Yl ) + _2V(x,Y2 ).
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(ii) Boundedness,i.e., there exists a positive constant y

such that

IV(x,Y) l =< YIlxll IIYII.

(iii) Positivity, i.e., there exists a positive constant

such that

V(x,x) _> 611xll 2.

Then there exists a uniquely determined bounded linear operator S with

a bounded linear inverse S-I such that

V(x,y)., (x,Sy)

and IISII < y, IIs-ill =< 6-1 .

whenever x,y e H

A proof of the above theorem can be found in [23].

Definition 111-5. A seauence {x } in a normed linear space X
" n

is said to converge weakly to an element x _ X if lim
n+_ f (Xn) = f (x) for

every f e X*. In this case, x is uniquely determined in virtue of

Hahn-Banach theorem; we shall write w-lira x =x or simply x _ x in the
n_ n n

sense of weak convergence. It _s to be recalled that lim. _ X '= X or
n -+co n

x n + x denotes convergence in the strong topology (i.e., norm topology)

Theorem 111-8. Let {x } be a sequence of elements in a normed
n

w

linear space X. (a) If x -_ x then x -* x but not conversely. (b) If
n n

w w

x n _ x then l lxnll< " for all n and llxll =< n-_li--'_ml lxnll. (c) Xn * x

limf, , f(x) for every
if and only if (i) n>iSupllxnll< _, and (ii) n_- tXn) =

f _ D where D is a dense subset of X* (in the strong topology of X*).

As an example of a weakly convergent sequence which is not

strongly Convergent, we take the sequence of vectors

eI = (i,0,0, ....), e2 = (0,1,0,...), ...

in the Hilbert space (£2). This sequence converges weakly to zero since
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by theorem 111-4, given any f e (£2), there exists an x = (Xl,X2,...)

+ 0. However, {e } does note(£2) such that f(e n) = (en,X) = x n n

converge strongly to zero since IIXnl I = 1 for every n = 1,2,..'.

In a Hilbert space II, if the sequence {x n} of H converges

lim
weakly to x _ H and n -_ IXnl I = llxIl, then {Xn } converges stronF_ly

to x. in c-e" case of a _±nxee axmensxona± space, weak convergence

coincides with strong convergence. Weak convergence is related to the

weak topology of X, as strong convergence is related to the strong

topology. In the development of our results, there is no need of the

deeper notion of weak topology; the use of the simple notion of weak

convergence is sufficient for our purpose •

Definition III-6. A sequence {f } in the conjugate space X*
n

of a normed linear space X is said to converge weakly* to an element

f e X* if lim f (x) = f(x) for every x e X. We shall write w*-limf =f
n -_ n n-_ n

w*
or simply f -_ f.

n

Theorem 111-9. Let {f } be a sequence of elements in the con-
n

w*

j ugate space X* of a normed space X. (a) If f + f then f + f but
n n

w*
not conversely. (b) If X is a Banach space and, if f + f then l lf If < =

n n

lie
for every n and I lfll < _ If nil"

The weak continuity and weak differentiability are defined similarly.

Definition III-7. Let x(t) be a vector-valued function defined

on [0, _) to X. x(t) is said to be weakly continuous in t if <x(t), f>

is continuous for each f E X*; it is said to be weakly differentiable in

t if <x(t), f> is differentiable for each f e X*. If the derivative of

<x(t), f> has the form <y(t), f> for each f e X*, y(t) is the weak deri-

vative of x(t) and we write dx(t)/dt = y(t) weakly. Similar terminology

applies if x(t) is defined on (-_, =).
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Theorem III-i0. For any interval (a,b), if x(t) is weakly

differentiable for t e (a,b) with weak derivative identically zero,

then by using the corollary of theorem III-3 x(t) is constant.

D. Spectral Theory, Seml-groups and Groups

Let T be a linear operator with domain D(T) and range R(T)

both contained in a normed linear space X. The distributions of values

X for which the linear operator (XI-T) has an inverse and the properties

of the inverse when it exists are called the spectral theory for the

operator T.

Definition 111-8. If X is such that R(XoI-T) is dense in X
O

and XoI-T has a continuous inverse (XoI-T) -I_, X° is said to be in the

resolvent set o(T) of T; the inverse (Xoi-T) -I is denoted by R(Xo;T) and

is called the resolvent of T at Xo" All complex numbers X not in 0(T)

form a set c(T), called the spectrum of T.

Theorem III-Ii. Let X be a Banach space and T a closed linear

operator with _(T) and R(T) both in X. Then for any X e o(T), the

resolvent R(X; T) is an everywhere defined continuous linear operator.

The resolvent p(T) of T is an open set of the complex plane.

The above theorem implies that for any X e p(T), R(XI-T) =

= _(R(X; T)) = X, and that the spectrum o(T) of T is a closed set of the

complex plane. Further details on spectral theory can be found in [5] or

[23].

In the study of stability of solutions to linear operational

differential equations in the following chapter, we have used extensively

the semi-group and group theory developed by Hille and Yosida. Much
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about this basic concept can be found in their respective books

[8], [23]. llowever, we shall introduce some of the basic notions

and theorems in the remainder of this section. The concept of

nonlinear semi-groups, which is used in the study of nonlinear

operational differential equations, will be introduced in a later

chapter (see Chapter V). In the followin_, X is assumed to be a

real Banach space.

Definition 111-9. For each t a [0, _), let T t e L(X,X).

The family {Tt;t _ 0}= L(X,X) is called a strongly continuous semi-

group of class CO or simply a semi-group of class C o if the following

conditions hold:

(i) TsT t = Ts+ t for s,t _ 0.

(ii) T o = I (I is the identity operator).

lim

Ttx = Tto > 0 and each x E X.(iii) t+to x for each to =

Definition III-i0. The family {Tt; -_ < t < _}= L(X,X) is

called a strongly continuous group of class C or simply a _roup of
O

class C
O

if the following conditions hold:

(i)

(ii)

(iii)

TsT t = Ts+ t for -_ < s,t <

T = I
O

lim

Ttx = TtoX for -_ < to < _ and each x g X.
t-_t°

It is clear that if {Tt; -_ < t < _} is a group, then both

{Tt; t => 0} and {Tt; t =< O} are semi-groups. If {Tt; t => 0} is a

semi-group, its norm satisfies for some M > 1 and 13 < "_

I ITtl I < M e 13t for t > O.

If !3 can be taken as g = O, {Tt; t _ O} is said to be an e_uibounded

semi-group of class Co; if in addition M=I, it is called a contraction
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semi-group of class C O . If B can be taken as B < O, {Tt; t _ 0} is

said to be a negative semi-group of class C and if, in addition, M=I,
o

it is called a negative contraction semi-group of class C . If
o

{Tt_ -_ < t < _} is a group then the above inequality is replaced by

 Itt
llTtlI< M e

Similar terminology applies for a group.

for -_ < t <

Definition III-ii. The infinitesimal generator A of the semi-

group {Tt; t _ 0} is defined by

lim ThX-X
Ax =

h+O h

for all x e X such that the limit exists.

For the infinitesimal generator A of a semi-group of class Co,

the following properties of A are known (e.g., see Yosida [23]).

Theorem 111-12. Let A be the infinitesimal generator of a

semi-group {Tt; t _ 0}. Then (a) A is a closed linear operator with

domain V(A) dense in X and the zero vector 0 e P(A), (b) if x e 0(A)

then Ttx e D(A) for all t _ 0 and d/dt (Ttx) = ATtx = TtAx, and (c)

if llTtl I _ M e _t, then all _ with Re(1) > B is in the resolvent set

0 (A) of A.

The following result is due to E. Hille and K. Yosida indepen-

dently of each other around 1948 and is called the Hille-Yosida theorem.

We state it with X as a Banach space rather than the more general

locally convex linear topological space.

Theorem 111-13 (Hille-Yosida theorem). Let A be a closed

linear operator with domain _(A) dense in X and range _(A) in X. Then A

is the infinitesimal generator of a semi-group {Tt; t _ 0} satisfying
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llTtll _ M e Bt with M _ i and 8 < _ if and only if there exists real

numbers M and B as above such that for every integer n > _, n e o(A)

and

I IR(n;A)mll _ II(nl-A)-mll _ M( n-8)-m (m=l,2, "'')"

Notice that in the above theorem, B can be positive as well as negative.

Definition III-12. Let A be a linear operator with domain

D(A) and range R(A) both contained in a Hilbert space }|. A is called

dissipative with respect to the inner product (.,.) of H if

Re(Ax,x) _ 0 for x e _(A)

and is called strictly dissipative if there exists a 8 > 0 such that

Re(Ax,x) _ -B(x,x) for x e _(A).

Theorem III-14. Let A be a linear operator with domain Q(A)

dense in H and range R(A) in H. Then A is the infinitesimal generator

of a contraction semi-group of class C in H if and only if A is
o

dissipative and R(I-A) = H; and A is the infinitesimal generator of a

in H if and only if A is
negative contraction semi-group of class C O

strictly dissipative and R((I-B)I-A) = H where B is the constant in

definition III-12.

Corollary. Let A be a densely defined closed linear operator

from a Hilbert space H into H. If A and its adjoint operator A* are

both dissipative 9 then A is the infinitesimal generator of a contraction

semi-group of class C O .

E. Distributions and Sobolev Spaces

In this section, we shall introduce some of the fundamental

definitions and theorems on the theory of distributions and on the

class of Sobolev spaces.
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A real-valued function q(x) defined on a linear space X is

called a semi-norm on X, if the following conditions are satisfied:

(i) q(x + y) _ q(x) + q(y)

(ii) q(_x) = I_I _(X).

It follows directly from the definition that q(0) = 0, _(x-y) >

lq(x) " _(Y) I and q(x) _ 0. Let f(x) be a complex-valued (or

real-valued) function defined in an open subset _ of the Euclidean

space Rn. The support of f, denoted by supp(f), means the smallest

closed set containin_ the set {x _ _ f(x) _ _ (or ...._.._i_.+i.. _^

smallest closed set of &_ outside of which f vanishes identically).

I _ CTMDefinition III-_. By (_), 0 < m < _ we denote the set

of all complex-valued (or real-valued) functions defined in _ which

have continuous partial derivatives of order up to and including m

(of order < _ if m = _). By C_(_), we denote the set of all functions

of cm(_) with compact supports_ i.e., those functions of cm(_) whose

supports are compact subsets of _. (A subset of Rn is compact if and

only if it is closed and bounded). In the case of m = _ the linear

space Co(a ) defined by

(fl + f2 )(x) = fl (x) + f2 (x)' (af)(x) = _f(x)

is of particular importance.

For any compact subset K of _, let DK(_) be the set of all

functions f e C_(_) such that supp(f)_ K. Define a family of semi-

norms on DK(_) by

sup [Daf(x) ] (p < _)
qK,p (f) = I_I_p,x e K

where

= (el' a2' "''' an) with ej > 0 (j=l,2,...,n),
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D ° = _al+_2+'''+an

x I _x 2 ..._xnn

DK(_) is a locally covex linear topological space. The strict

inductive limit of DK(_)'s , where K ranges over all compact subsets

of _, is a locally convex linear topological space. Topologized in

_h_.........,_ay_ C_(_) wi]] be denoted bv_ D(_)..... The convergence n_lim f_ _ f

in D(_) means that the following two conditions are satisfied: (i)

there exists a compact subset K of _ such that supp(fn)= K

(n=l,2,...), and (ii) for any differential operator D_, the sequence

Defn(X) converges to D_f(x) uniformly on K.

Definition 111-14. A linear functional f defined and continuous

on D(_) is called a distribution or a generalized function in _; and

the value f(_) is called the value of the distribution f at the testing

function _ e D(_). The set of all distributions in _ is denoted by

D(_)* since it is the conjugate space (or dual space) of D(_). It _s

a linear space by

(f + g)(¢) = f(#) + g(#), (_f)(#) = af(#).

Concerning the criteria for a linear functional to be a

distribution, the following two theorems are useful.

Theorem llI-15. A linear functional f defined on D(D) is a

distribution in _ if and only if f is bounded on every bounded set of

D(_) (in the topology of D(_)).

Theorem 111-16. A linear functional f defined on C](_) is

a distribution in _ if and only if f satisfies the condition: To

every compact subset K of _, there correspond a positive constant C

and a positive integer m such that If(%)[ _ CI_ I_ _ e KI D _(x)[ when-

ever _ e DK(_).
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Definition 111-15. The derivative of a distribution f is

defined by

f(¢) = _f(8_(x) )

8x i _ x i
(i--l,2,...,n), ¢ e D(_).

Thus,a distribution in _ is infinitely differentiable and

n

(Daf)(¢) = (-i) lalf(Da¢) a =(al,a2, ...,an) , Ial = [ a .

J=l j

Sobolev Spaces Wm'P(_). Let _ be an open subset of the

Euclidean space R n, and m a positive integer. For I < p < =, we

denote by Wm'P(_) the set of all complex-valued (or real-valued)

functions f(x) = f(xl,x2,...,Xn) defined in _ such that f and its
n

distributional derivatives Daf of order lal = [ a < m all belong to

j=l j =

LP(_). Wm'P(_) is a normed linear space by

(f + g) rx_x-,= -V(X) + g(x), x_fj'-''"kx, = _f(x) and

[Ifllm'P = (I!I__<mnflD_f(x) Ip dx)i/P

where dx=dXldX2...dx is the Lebesgue measure _n R nn _ .nder the con-

vention that two functions f and g are considered as the same vector

of Wm'P(_) if f=g a.e. in _. Thus Wm'P(_) is a subspace of LP(_).

It is easy to see that wm'2(_) is an inner product space by the inner

product

= I! I ] D_f(x) Dag(x) dx.(f'g)m,2 _m

In fact, the space Wm_P(_) is a Banach space. In particular,

wm(_) _ wm'2(_) is a Hilbert space by the norm Ilfll m_ Ilfllm, 2 and

the scalar product (f'g)m _ (f,g)m,2.

The spaces Hm(_) and H_(_). Let _ be an open domain of Rn

and 0 _ m <=. Then the totality of functions f c cm(_) for which
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the norm IIflIm is given by the form as for wm'2(_) constitutes

an inner product space _m(_) by the inner product

7 [ D_f(x) D_(X) dx f,_ e cm(R).

(f'g)m- I .l m

The completion of _m(_) is a Hilbert space and is denoted by Hm(_).

Similarly, the totality of functions f e cm(_)o with the norm l lfl Im

and the inner product (f'g)m defined as for f e cm(_) constitutes an

^oTMinner product space H (_) whose completion is a Hilbert space denoted

by llm(n).

The above definition implies that C_(fl) is dense in Hm(_).
o o

In fact, we have

Theorem 111-17. The subset C_(fl) of LP(fl) i <= p < _, iso

dense in Lp(_).
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IV. STABILITY THEORY OF LINEAR DIFFERENTIAL EQUATIONS

IN BANACH SPACES

This chapter is concerned with the stability as well as

the existence and uniqueness of a solution of the operational differ-

ential equation

dx(t) = Ax(t) (t > 0) (IV-l)
dt =

where the unknown function x(t) is a vector-valued function defined

on [0, =) to a real Banach space X and A is a given, in general un-

t '_ D f^_bounded, linear operator with domain D_Aj and range ,._ both in X.

It is well known that some linear systems of differential equations,

both ordinary and partial, can be reduced to the form as in (IV-I) and

in such cases A may be considered as an extension of a linear differen-

tial operator. In order to examine the stability of solutions to (IV-I),

it is only necessary to characterize their properties without actually

constructing the solutions. This is done by considerin_ the properties

of a semi-group because if A is the infinitesimal _enerator of a semi-

group {Tt; t __>0} of bounded linear operators on a Banach space X then

a solution to (IV-l) starting at t > 0 from x e _(A) is given by
o -- o

x(t; Xo, to) = Ttx ° for all t __>to with X(to; Xo, t o ) -- x o. Thus it is

important to impose conditions on the operator A so that it is the infin-

itesimal generator of a semi-group from which the existence of a solution

is ensured. Then, the stability criteria can be established from the

semi-group properties.
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A. Background

It was seen in Chapter II that by usin_ semi-group or group

theory, a Lyapunov stability theory for the linear operational differ-

ential eouation (IV-l) in a real Hilbert space was established in [3]

and the extension to a real Banach space for the case of a group was

accomplished in [21]. In order to describe these results and the

further developments, it is convenient to state some fundamental defini-

tions and known results.

Definition IV-l. A solution x(t) of the eouation (IV-l) with

initial condition x(O) = x e _(A) means:

x(t) is uniformly continuous in. t for each t _ 0 with(a)

x(0) = x;

(b) x(t) e D(A) for each t > 0 and Ax(t) is continuous in t

for each t > 0;

(c) the derivative of x(t) exists (in the stronp topolopy)

for all t > 0 and equals Ax(t).

Definition IV-2. An eouilibrium solution of (IV-l) is a

solution x(t) of (IV-l) such that

llx(t)-x(0)][= 0 for all t $ 0,

and is denoted by x(t) = x .
e

Definition IV-3. An equilibrium solution x e of (IV-l) is said

to be stable (with respect to initial perturbations) if given any e> 0,

there exists a 6 > 0 such that

llX-Xel ] < 6 implies IIx(t)-Xel I < e for all t $ 0;

xe is said to be asymptotically stable if
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(i) it is stable; and

(ii) lim '"x(t)-xe= 0t-_=

where x(t) is any solution of (IV-I) with x(O) = x e N(A).

exists positive constants M and S such that

then x
e

If there

(ii)'llx(t)-xelI=<M e-stllx-xelI

is called exponentially asymptotically stable.

It is clear from the above definition that if 0 E I_(A) then

x=0 9 the null solution, is an equilibrium solution of (IV-l). Suppose

that an equilibrium solution x exists. By letting y(t) = x(t)-x ,

equation (IV-l) becomes dy(t)/dt = Ay(t) (t _ O) which is the same form

as the original equation with initial condition y(0) = x(O)-x . Since
e

the domain of the operator A which we are concerned with contains the

zero vector, it follows that the study of the stability problem of an

equilibrium solution of a linear system is equivalent to the study of

the stability property of the null solution. Throughout this cha_ter,

the null solution is assumed as the underlyin_ eauilibrium solution

which implies that definition IV-3 for stability or asymptotic stability

of an equilibrium solution can be simplified by taking x = 0o It
e

should be remarked that the stability theory developed in this and the

following two chapters is not limited to e_uilibrium solutions; in fact,

it is valid by starting from any initial element x in D(A) with
o

solution x(t; Xo, to) which is not an eauilibrium solution (such as a

periodic solution or any unperturbed solution).

The following three theorems are from [3].

Theorem IV-I. Let H I = (H, (.,.)i) be a real Hilbert space.

An inner product (.i.) 2 defined on the linear space H is equivalent to
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the inner product (''')i if and only if there exists a symmetric

bounded positive definite linear operator S e L(HI, HI) such that

(x,Y)2 = (x,Sy) 1 for all x,y e H.

Remarks. (a) The above theorem is stated in a slightly

different way from the original form for the sake of definiteness;

proof of the above result remains the same. It is to be noted that

if S e L(HI,HI) , the terminologies of symmetry and self-adjointness

of S are the same. (b) Theorem IV-I has been extended in Chapter V

to the case of a complex Hilbert space where the symmetriclty condi-

tion is not explicitly needed.

A Lyapunov functional on a real Hilbert space H 1 is defined

in [3] through the symmetric billnear form

V(x,y) = (x,Sy) 1 = (y,Sx) 1 x,y e H 1

where S e L(HI,HI) is a self-adjolnt (symmetric) bounded positive

definite linear operator. The Lyapunov functional is defined by

v(x) = V(x,x) x e IJI.

It follows from the above definition and theorem IV-I that V(x,y)

defines an equivalent inner product with respect to ('")i (see

definition V-7).

Theorem IV-2. Let A be a linear operator with domain D(A)

dense in HI, range R(A) in H I and R(I-A) = H I . Then the null solution

of (IV-I) is asymptotically stable if there exists a Lyapunov func-

tional v(x) such that

2

(x) = 2V(x,Ax) _ -2 8 I [xl Ii x e _(A).

It has been shown in [3] that under the hypothesis of theorem

IV-2, A generates a negative semi-group so that the null solution of

IV-I is asymptotically stable.
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Theorem IV-3. Let A be a linear operator with domain _(A)

dense in H I and range R(A) in H I such that _(_I-A) = H I for real

with l_I sufficiently large. Then A is the infinitesimal generator

of a negative group (i.e., a group of exponential type) if and only

if there exists a Lyapunov functional v(x) = V(x,x) such that for

some constant 6, y with 0 < 6 _ y <

-2yV(x,x) _ _(x) = 2V(x,A x) _ -28V(x,x) x e _(A).

Remark. By the definition of a Lyapunov functional, (x,Y)2_V(x,y)

defines an equivalent inner product and thus the above inequality is the

same as

2
2 < (x,Ax) 2 < _611x112-YIIxll 2 =

where (''')2 is equivalent to (''')1 (see definition V-7).

In order to extend theorems IV-2 and IV-3 to a Banach space,

the notion of semi-scalar product, introduced by Lumer and Phillips

[15] in the study of contraction semi-groups, is used. The following

two theorems are from [15] and their proofs can also be found in [23].

Theorem IV-4 (Lumer). To each pair {x,y} of a complex (or

real) normed space X, we can associate a complex (or real) number [x,y]

such that

(i)

(ii)

(iii)

(iv)

[x + y,z] = [x,z] + [y,z];

[_x,y] = _[x,y];

Ix,x] = Ilx112;

I[x,y]l a Ilxll Ilyll

[x,y] is called a semi-scalar product of the vectors x and y.

Because the construction of a semi-scalar product is essential

in our later development, we give a brief proof of this theorem.
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According to the Hahn-Banach theorem (theorem 111-3), given any x ° e X

there exists at least one (let us choose exactly one) bounded linear

functional fXoC X*, the dual space of X, such that IIfXoll = IIXoll

and fxo(Xo) = llXo I12" This is true for any x o e X. It is clear that

Ix,y] = fy(X)

defines a semi-scalar product.

Definition IV-4. Let a complex (or real) Banach space X be

endowed with a semi-scalar product [x,y]. A linear operator A with

domain _(A) and range R(A) both in X is called dissipative (with

respect to [.,.]) if

Re[Ax,x] < 0 x c _(A);

and is called strictly dissipative (with respect to [.,.]) if there

exists a real number B > 0 such that

Re[Ax,x] _ B[x,x] -sJJxJl 2- = x e D(A).

The supremum of all the positive numbers 8 satisfyin_ the above inequal-

ity is called the dissipative constant of A.

Theorem IV-5 (Phillips and Lumer). Let A be a linear operator

with D(A) and R(A) both contained in a complex (or real) Banach space

X such that V(A) is dense in X. Then A generates a contraction semi-

group in X if and only if A is dissipative (with respect to any semi-

scalar product) and R(I-A) = X.

Corollary. Let A be a linear operator with _(A) and R(A) both

contained in a real Banach space X such that D(A) is dense in X. Then

A generates a negative contraction semi-group in X if and only if A is

strictly dissipative with dissipative constant 8 and R(I-(81 + A)) = X.
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The extension of theorem IV-3 from a real Hilbert space to a

real Banach space has been accomplished in [.21] where an important

lemma which is also useful in the case of a semi-group is proved.

Before stating these results, we introduce one more definition of

equivalent seml-scalar product.

Definition IV-5. Let [.,.] be a semi-scalar product on the

Banach space (X, ll'II) with [x,x] = ilxii 2. Then the seml-scalar

product [''']I with [x,x]l = llxIl_ is said to be equivalent to [.,.]

on X if and only if !!'!!l and !!•!! _r_ equivalent on X.

Lemma IV-I. Let A be the infinitesimal generator of an equl-

uvuL,u_u K*L_=u_v_2 _=m_--gLuup _t_ L =_ u; in a [_a± manacn space

(X, If. If). Then there exists an equivalent semi-scalar pro4uct [.,.]

inducing an equivalent norm 11.II 1 with respect to which A is dissipa-

tive (strictly dissipative)•

This lemma implies that there exist constants 8, y, 6 with

0 < 6 _ y < _ and 0 < S < _ such that

Ixl12< llxit2< Ixl12
= 1 =

and

[Ax,x] < 0 ([Ax,x]< -Sllxll2) x _ _(A)

Theorem IV-6. Let A be a linear operator with domain _(A)

and range R(A) both contained in a real Banach space (X, ll'II) such

that _(A) is dense in X. Then A generates a group {Tt; -_ < t < _}

in X such that {Tt; t _ 0} is a negative contratlon semi-group with

respect to an equivalent norm I .II 1 if and only if

Yxllxll_ =< [Ax,x] =< -_x Ilxllml x e _(A),
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where 0 < 61 _ YI < _ and [.,.] is an equivalent semi-scalar product

consistentwith11"III,and

R(I(I-61)-A) = X, R(I(I + yl ) + A) = X.

B. Construction of Lyapunov Functionals

In a real Hilbert space, a Lyapunov functional can be defined

through a bilinear functional V(x,y) on the product space H x H which

satisfies the conditions of symmetry, boundedness and positive definite-

ness. In case of a general Banach space, it can be defined through an

equivalent semi-scalar product which possesses most of the properties

of the above bilinear functional. (e.g., bilinearity, boundedness and

positive definiteness). We shall give a formal definition of a Lyapunov

functional in this chapter.

Definition IV-6. Let X = (X, ll'II) be a Banach space, and let

[.,.] be an equivalent semi-scalar product inducing an equivalent norm

ll.ii 1 on X. The scalar functional v(x) defined by

v(x) = [x,x] for all x e X

is called a Lyapunov functional.

It follows from the above definition that there exist constants

6 and 7 with 0 < 6 < y < _ such that

_11x;;2 = v(x)_ Yilx;l2 forallx _ X

since II'il and II.ll 1 are equivalent.

In order to prove the main results, we show the following lemma

which plays an essential role in the construction of a Lyapunov functional.

Lemma IV-2. Let A be the infinitesimal generator of a semi-group

{Tt; t _ 0} in a Banach space X wlth norm if-It, and let [-,.] be any
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seml-scalar product on X. Then

2[ATtx ' Ttx] = ddt IITt xl12

Proof. Let t > 0 be fixed.

Tt+h x is defined for any x e Q(A).

product, we have

(t > O, x e _(A))

Choose h with Ihl < t so that

By the property of semi-scalar

(IV-2)

[Tt+ h x-Ttx, Ttx] = [Tt+hX , Ttx] - [Ttx , Ttx] <

=< l lTt+hXll l lTtxll - l lTtxl I2 = l lTtxll (I ITt+hXll - l lTtxll).

Hence for h > O, the above inequality implies, on dividing both sides

by h, that

Tt+hX-Ttx

[ h , Ttx] =< I

l lTt+hXll - l iTtxii

Ttxi[ (" h )"

As h + O, this becomes

d d 2

[ATtx , Ttxl < l lTtxll --_ llTtxll = i/2 --_ l lTtxll

since the differentiability of Ttx implies the differentiabilitv of

l[TtxI [. For the case of h < 0, we have on dlvidln_ both sides by h

[Tt+hX - Ttx l lTt+hXll - l lTtxll
h ' Ttx] > [[TtxII (_ h )"

Since h-l(Tt+hX-Tt x) = ''Ihl-I (Ttx-Tt_lhlX), it follows by taking h ÷ 0

in the above inequality that

tATtx, Ttx] $ iiTtx[ I d d 2--_ [[Ttxll = 1/2 --_ [[Ttx[l

Comparing the two inequalities involving the same term 1/2 dllTtxll2/dt

yields

d [22[ATtx, Ttx] =_'_ [ITtx[

which proves the lerm_a for t > 0. The validity of (IV-2) for t - 0
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follows from a theoremwhich will be shownin a later section (see

theoremsIV-10 and IV-II) where the derivative of llTtxll 2 at t=0

is taken as the right side derivative.

Remarks. (a) By following the same proof as above, it can

be shown that if A is the infinitesimal generator of a group {Tt;

-_ < t < _}_ then

2[ATtx ' Ttx] = dat IITt xl12 -_ < t < _.

(b) The requirements in lemma IV-2 can be replaced by a weaker assump-

tion: Let x(t) be a vector valued function defined on [a,b] to a

Banach space X. Suppose that x(t) is strongly dlfferentiable with

respect to t (and so llx(t) ll is also differentiable in t), then for

any semi-scalar product [.,.]

d d i ix(t) l 12
2[--_ x(t), x(t)] = d---_ a < t < b.

The proof is the same as in lemma IV-2 by replacing Ttx by x(t).

Tile application of the "direct method" to stability problems

consists of defining a Lyapunov functional with appropriate properties

whose existence implies the desired type of stability. In this chapter,

we are particularly interested in the stable and the exponentially asymptot-

ically stable type. In case the operator A of (IV-I) is an infinitesimal

generator of an equibounded or negative semi-group, then the existence of a

Lyapunov functional having the desired property can be constructed as is

seen in the following.

Theorem IV-7. If A is the infinitesimal generator of an e0ui-

bounded semi-group (Tt; t _ 0} (of class Co) in a real Banach space X,

then there exists a Lyapunov functional v(x) such that

(x(t)) < 0 (t > O)
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where x(t) -- Ttx is an arbitrary solution of (IV-I) with x e D(A).

Proof. By lemma IV-l, there exists an equivalent semi-scalar

product [.,.] inducing an equivalent norm I" III with respect to which

A is dissipative• Define v(x) = [x,x] = I xl 12 , then by the equi-

valence relation of II" II and l l'Ill there exists constants 6, y with

0 < 6 < y < _ such that

6[Ixll 2 < v(x) = llxll 2 < yIIxll 2 (IV-3)

Moreover, by lemma IV-2 and the dissipativity of A, for any x e _(A)

".t_ .._ = lira _-if,,f T v_-vCT w_ =
v_t^j - h+O " _'"t+h"" "-t''"

lim b-1611T, xl[ 2 - I ITtxll_) =
h+0 "' ' t+h ' 'i ....

_ d llTtxll2 2[ATtx ' _ .I _ 0 (t " n_dt i = _t _j _ & "'J

since Ttx e Q(A) for all t _ 0. Hence the theorem is proved.

In case A is the infinitesimal generator of a negative semi-

group, we have an analogous theorem.

Theorem IV-8. If A is the infinitesimal _enerator of a negative

semi-group {Tt; t $ O} (of class C o ) in a real Banach space X, then

there exists a Lyapunov functional v(x) such that for some B > 0

_(x(t)) _ -B llx(t) ll2 (t $ 0)

where x(t) = Ttx is an arbitrary solution of (IV-I) with x e _(A).

Proof. By lemma IV-l, A is strictly dissipative with respect

to an equivalent semi-scalar product [.,.]. By lemma IV-2 and the

strict dissipativity of A we have, following the same reasoning as in

the proof of theorem IV-7,

2

_(Ttx) = 2[ATtx , Ttx ] _ -2 BIIITtxll I

for some 81 > 0 where I1.1] 1 is induced by [.,.]. The e_uivalence
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between II" II an(] If" II I implies by using (IV-3) that

_(Ttx) _ -2 Bl611Ttxll 2 = -811Ttxll 2 (t $ O)

where 8 = 2816 > 0. Thus the theorem is proved.

In case X is a Hilbert space with norm I Ixll = (x,x) I/2 the
9

existence of a evaDunov flmr_inn_1 _ =e_11 _,°14A _i+_.....i.
. - ............................... _,, the space

norm IlxIl 1 = [x,x] I/2 is not necessarily a Hilbert
X with the induced

space. However (X, I{.{ll) is at least a Banach space since these two

norms are equivalent and so the completeness of one space implies the

completeness of the other.

The purpose of constructing a Lyapunov functional with the

property as in theorems IV-7 and IV-8 can be seen from the following

Suppose that a Lyapunov functional v(x) = [x,x]
considerations:

satisfying

_(x(t)) _ -811x(t) ll2 (t _ 0)

for some 8 _ 0 can be constructed. Regardin_ v(x(t)) _ v(t) as a

function of tp we have

2 = _BlV(t )÷(t) _ - slIx(t)ll2 _ - 8/w IIx(t) l[ 1

2 [x(t), x(t)] = v(x(t)) where 8i = 8/y. Uponsince I Ix(t) lll=

integrating the above inequality yields

v(t) < v(O) e-B1 t

which implies that

61

(t > O)

x(t)ll2 < l[x(t)ll2 = v(x(t)) < v(x(O)) e-81 t
= 1 =

Thus

=I

[Ix(t)

x(o)ll2 e-Sl t < wllx(o)ll2 e-Bit
I =

I _ (Y/6) I/2 e-I/2 Blt IIx(O)ll (Sl= o)
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which shows that the null solution is stable for 8 = 0 and is

exponentially asymptotically stable for B > O.

It is to be noted that the construction of a Lyapunov

functional having the desired property as in the above consideration

is based on the assumption that solutions to (IV-l) exist. Thus the

existence of a Lyapunov functional alone is not sufficient for solv-

ing the stability problem of a partial differential equation unless

the existence of a solution is assured. The assurance of the exist-

ence of a solution requires further restriction.

C. Stability of Linear Operational Equations

As seen in the previous section the existence of a Lyapunov

functional and the satisfaction of certain conditions by its deriva-

tive evaluated along solutions if they exist imply certain stability

properties. Thus, to investigate the stability behavior of the

solutions of ' . 4,<I_-z2 by Lhe Lyapunov's direct method, it is important

to know that a Lyapunov functional exists. In this section, the

necessary and sufficient conditions for the existence of a Lyapunov

functional is established. This relation is valid for a Banach space

as the underlying space as well as for a Hilbert space. Throughout

this section, X denotes a real Banach space and H denotes a real

Hilbert space. It has been seen that in the case of a real Hilbert

space H, a Lyapunov functional can be defined through a symmetric

bilinear form

V(x,y) = (x, Sy) x,y e H

where S e i(H,H) is a self-adJoint bounded positive definite linear
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operator. The boundedness of S implies that

[V(x,y)[ = [(x. Sy)[ =< [[S[[ []x[[ I[Y[[ (x,y E H)

which shows that V(x,y) is continuous in both x and y; that is,

for any sequences {x n} and {yn } in H such that xn + x and Yn ÷ y

then

lim V(xn,Yn_.. = V(x,y).
n-woo

In the case of a real Banach space X, a Lyapunov functional is

defined through an equivalent semi-scalar product by V(x,y) = [x,y]

which, as is seen in theorem IV-4_ is defined through the choice of a

continuous linear functional f c X* for each fixed y E X. This
Y

semi-scalar product has the property that [x,y] = f (x) for each x e X
Y

and llfy[[ = I[YlI- Although the linear functional fy(X) is continuous

in x, it is not clear that f (x) is also continuous in y since we
Y

know only that I[f [I = IIY[[. From the eyapunov stability point of
Y

view it is desirable to know whether or not

lim

t+O [ATtx' Ttx] = [Ax,x]
x _ _(A)

where A is the infinitesimal generator of the semi-group {Tt; t _ 0}.

If this last can be verified, then solutions need not be constructed.

We shall show that the answer is affirmative by first establishing a

series of lemmas which are essential in the proof of the above convergence

relation. Before proving these lemmas, it is convenient to give the

following notations: Let x(t) be a vector-valued function defined on

[0,_) to a real Banach space X such that x(t) is continuous in t with

lim x(t) = x(O) E x in the strong topology. For each fixed t > O, let
t+O =

M t {m; m _ x(t), e real} and

Yt = {y; y = m + BXo, m E Mt, B real}
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where x
O

Mt_ Yt"

Lemma IV-3.

Mt defined by

is a fixed element in X but not in M t. It is clear that

With this notation, we have the followin R.

(a) For any fixed t _ O, the functional ft on

ft(m) = allx(t) ll2 for m = ax(t) e M t

is a continuous linear functional on M t with I Iftl I = IIx(t)l I.

(b) For the same t as in (a) and for any number ct the functional

F t on Yt defined by

Ft(Y ) = ft(m) + Be t for y = m + Bx ° e Yt

is a continuous linear functional on Yt"

Proof. Part (a) of the lemma is obvious, for if ml, m 2 E Mr,

then ft(Ylml + Y2m2 ) = ft((Tlal + T2a 2) x(t)) = (Yl_l + Y2_2) IIx(t)II 2 =

ylft(ml) + Y2ft(m2) and Ift(m) I -- !a! !Ix(t) II 2 = llx(t) ll l lmll for

all m e M t which implies that .....;Ift) I=I ;x(t)],• . , I- To show that Ft is a

linear functional on Yt' let YI' Y2 £ Yt with Yl = ml + BlXo and

Y2 = m2 + 82Xo' then

., O N

(YiYl + -- , _i.i + T2_2Jx o) =Ft y2Y2) Ft((Ylml + Y2m2 ) _ t,

= ft(Ylml + Y2m2 ) + (TI81 + Y282)c t = Tlft(m I) + YlSlCt +

+ Y2ft(m 2) + Y2B2 c t = YiFt(Yl ) + Y2Ft(Y2 ).

This shows part (b) of the lemma.

Lemma IV-4. For the same fixed t > 0 as in lemma IV-3, there

exists a number ct in defining the functional F t such that

lift11 -- lift11 -- 11x(t)ll Ct 0).

In particular, for t = 0 there exists an number c such that the func-

tional F on Y defined by
O O

Fo(Y) = fo(mo) + B c for y=m + B x e Y with m _ M0 0 0 0 0

iS a continuous linear functional on Yo with I IFol I = l!foll = i[x[[.
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Proof. It suffices to show that [IFtl I __< Iiftl I since F t is

an extension of ft which implies that Ilftl I < l lFtl I. To accomplish

this, we show that there exists a number c t in the definition of F t

such that

IFt(Y) I < IIftIl llyll for all y e Yt" (IV-4)

Since IFt(Y) i = Ift(m) + B ctI

equivalent to

for y = m + B x , (IV-4) is
o

-}Iftl I llm + B Xol I -ft(m) =< B c t =< llftl I llm + B Xoll-ft(m).

(IV-4)'

Now if _ = O, then y = m e M t and Ft(Y) = ft(m) which implies that (IV-4)

is satisfied for arbitrary fixed t. We assume that B # O. Hence for

B > 0 (IV-4)' is equivalent to

-llftl I II_+ Xol I -ft(_) < c t < llftl I II_+ Xol I -ft(_) (IV-4)"

and for B < 0 it is eauivalent to

i 1 1

_l]ft][ ]lm+_ xoil -T ft (m) < ct --<--B[lft[I [[m+B Xoll- _ ft(m)

which can immediately be reduced into the same form as in (IV-4)". Thus

it is sufficient to choose c t satisfying

-[ [ft[[ [[m'+_o[ I-f t (m') < c t < [[ft[[ []m'+Xo[ [-ft(m')

The choice of c t is possible since for any m' m", e M t

= +m"-x II_<ft(m') + ft(m") = ft(m'+m') < []ftl] IIm'+m"ll -- Ilftll llm'+% o

_< [[ft[[ [[m'+Xo[[ + lift[[ [[ m"-x o []

which implies that

-IIftll11m"-xolL+ft<m'')_-<11ft11llm'+Xoll-ft(m')•
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The arbitrariness of m" in Mt implies

m,,eMtsup[-Ilftll Ilm"-Xoll+ft(m") ] =<IIftl I Ilm'+XoJl-ft(m')
and the arbitrariness of m' in M yieldst

m' e Mt;

sup[ [+ft(m,,)] < infm"eML-I [ftll l lm"-Xol = m, eMt[l Iftl I l lm'+Xo[ l-f t(m')].
t (IV-5)'

In order to satisfy (IV-5), we need only to choose c t satisfying

inf .

m,,eMtsup rJJftlJt- llm"-Xoll+ft(m")] =< c t __<m,eMt[llftl I llm'+XolI-ft(m')].

(IV-5)"

It follows that (IV-5)" reduced to the form (IV-5) by lettin_ m" = -m' for

any m' E M t. With this choice of ct, (IV-4) is satisfied and from which

JJFt! I =< JJftl !. Since F t is an extension of ft' JJFtll => !!_t'jl'" There-

fore, liFt ! = !JftJl. The above is true for each fixed t _ 0 and, in

particular for t = 0, F o is a continuous functional on Y where c corres-O

ponds to c .
O

In general, _t depends on t and there may be infinitely many of

them for any t. The object in the following lemma is to select a number

c t satisfying (IV-5) such that c t is a continuous function of t with

c t + c as t + 0.

Lemma IV-5. The constant c in lemma IV-4 can be choosen as a
t

continuous real-valued function of t for t e[0, to] wlth to a fixed posi-

tive number such that c + c as t + 0.
t

Proof. Since if m E Mr, then m = ax(t) and ft(m) = _I1x(t) ll 2

for some real a, it follows from llftl I = [Ix(t)II that (IV-5)" becomes

s P[-llx¢t)llll=x(t)-Xoll+ =lJx(t) lJ 2] : ct : i_f[lJx(t) Jl Jl_x(t)÷Xoll-

-  llx<t)ll2].
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Since the continuity of x(t) in t in the strong topology implies the

continuity of JJx(t)Jl in t, and since the product or the sum of two

continuous functions is continuous, it follows that the real-valued

scalar functions

f(_,t) - -IIx(t)ll ll=x(t)-xo

gko,n) = IIXk_TJl lip xk_/-"x 0

l+ = lx(t) ll 2

I_t_ I I 2
J- _ l_'-'_t-,Ill

are continuous functions in t and a, and in t and B res-

inf
pectively. From supf(_,t) <

and

g(B,t), we can choose ct as a right

continuous function of t in tile interval [O,t o] such that

sup_ f(a,t) =< ct =< i_fg(B,t ) for t E [0,to].

It follows that

f(a,t) __<c t =< g(B,t) for all a, 8.

The continuity of c t implies, as t + 0, that

f(a,O) < c < g(B,O) for all a, g
O

which, by the same reasoning as in obtaining (IV-5)', yields

infrll_ll IlBx+_oll-ell_ll 2sup[-I I_11 I1=_-%11 + =1lxl 121 < c < B
Ot _ O ----

•

By choosing C=Co, the above inequality implies that for each B

-I I_11 I I_x+_olI_1 Ixl 12 -! c _! I lxll I IB_+xolI-BII_112

that is

-IJf Ji JJmo+XoJJ-fo(m o) < c < JJf II JJmo+Xoll-fo(mo ) for all m EM .
O = = O O O

Therefore, with this choice of c the functional F ° defined by

Fo (y) = Fo(mo + BXo) = fo(mo ) + Bc

is a continuous linear functional on M O with llFol I = llfol I = llxlJ

such that c t + c as t + 0 which proves the lemma.

As we have mentioned before, if there is a sequence {yn } in

X such that Yn + y strongly, one can not draw a conclusion that
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[x,y n] + [x,y] since [x,Y]n = fyn(X) where llfynll = llYnlI does not

ensure that {fyn(X)} converges to fy(X) for every x e X. However,

by using the above lemmas the following theorem can be shown

Theorem IV-9. Let A be the infinitesimal generator of an equi-

bounded (negative) semi-group {Tt; t _ O} (of class Co) in a real Banach

space X. Then there exists a semi-scalar product such that

lim

t+0 [Ax, Ttx ] = [Ax,x] x e _(A)

Proof. By lemma Vl-4, the functional Ft, with t fixed, is

a continuous linear functional on Yt with llFtl I -- l lftl I = llx(t) l I.

It follows from the Hahn-Banach theorem that there exists a continuous

linear extension G t on X such that [!Gt!! = !!F t

x(t) e M t

!Gt(x(t))! = !ft(x(t))! = !Ix(t)

= !!x(t)! !. Since

2

It is clear that for arbitrary fixed t > 0

Gt(Y) = [y, x(t)]

defines a semi-scalar product (see theorem IV-4). In p_rticular, when

t = O, then

Go(Y) = [y,x]

defines a semi-scalar product. For fixed x e _(A), let Ttx = x(t) and

= SoTtX e M t with _ fixed• We choose this xlet x ° = Ax-m ° where m ° o o

as the fixed element in the definition of Yt (if Xo e Mt, we consider

ft in place of Ft). Hence Ax = mo + Xo E Yt' and

= = = + = + ct t[Ax,rtx] Gt(Ax) Ft(Ax) Ft(m o x o) ft(mo ) = So[]Ttx]]2+c

On the other hand,

[Ax,x] = Go(AX ) = Fo(AX ) = fo(mo) + c = Sol Ix] 12 + c •

Therefore, by lemma IV-5

lim lim 12 ]x I 2 limt+0 ][Ax'Ttx] - [Ax,x]l _ t+0 ]_o]lrtx] - Sot +t+0 ct-cl = 0,

and the theorem is proved.
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Corollary. Let x(t) be a vector-valued function defined on

[0, _) to X such that x(t) is continuous in t in the strong topology,

and let A be a linear operator with Q(A) and R(A) both contained in X

with x(0) 5 x e Q(A). Then

lim [Ax,x(t)] = [Ax,x] x e D(A)
t+0

Proof. By the same argument as in the proof of the theorem,

the result follows.

Theorem IV-10. Let A be the infinitesimal generator of an equi-

bounded (negative) semi-group {Tt; t _ 0} (of class Co) in X, then

limr._ Ttx] [Ax,x] x e _(A)t+0 [Altx' =

Proof.

I[ATtx,Ttx ] - [Ax,x]I = I[TtAx-Ax,Ttx ] + [Ax,Ttx] - [Ax,x]I

I[TtAx-Ax,Ttx]I + I[Ax,Ttx] - [Ax,x]I _ llrtAx-Axll llTtxII+

+ I[Ax,Ttx] - [Ax,x]I

since ATtx = TtAx for x e D(A). Thus, by theorem IV-9

lim [ATtx,Ttx] _ lAx,x] I lim iTtAx_Axll llTtxll+ liml[Ax,Ttx ] _ [Ax,x]l= 0t+0 _ t+0 t+O

which implies the desired result.

Let x(t) be a solution to (IV-I) with x(O) = x whereCorollary.

x e _(A). Then

Proof.

t and satisfies

lim[Ax(t_ x(t)] = [Ax,x].
t+O _ - ,,

Since x(t) is a solution of (IV-I), it is differentiable in

d

Ax(t) = _-[ x(t) (t _ 0)

with x(O) = x e Q(A). Hence Ax(t) is continuous in t in the strong topology.

By the corollary of theorem IV-9 and the continuity of Ax(t) in t, we have
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lie [Ax(t), x(t)] - [Ax,x] I <
t+O =

lim(l[Ax(t) -Ax,x(t)]l + l[Ax,x(t)] - [Ax,x]I) <
t+O" =

lie l[Ax(t)_Ax[[ l[x(t)[l + lie
t+0 t+0 [[Ax'x(t)]-[Ax'x]l = 0

and the result follows.

It is known [15] that the infinitesimal generator of a contrac-

tion semi-group is independent of the choice of semi-scalar product. It

follows that an operator A with dense domain and R(I-A) = X which is

dissipative with respect to one semi-scalar product defined on a Banach

space X, is also dissipative with respect to any other semi-scalar pro-

duct compatible with the norm of X since under the given conditions A is

the infinitesimal generator of a contraction semi-group. This fact enables

us to choose any semi-scalar product on X consistent with the norm of X

such as the one constructed in the proof of theorem IV-9 without affecting

the dissipativity of A. The following two theorems give the necessary

and sufficient conditions for A to _enerate eaulbounded and negative semi-

groups respectively.

Theorem IV-If. Let A be a linear operator with domain D(A) dense

in X = (X, [I'II) and range R(A) in X. Then A is the infinitesimal gener-

ator of an equibounded semi-group {Tt; t _ 0} if and only if there exists

a Lyapunov functional v(x) = [x,x] such that

@(x) = 2[Ax,x] _ 0 x e D(A) (IV-6)

and R(I-A) = X where [.,.] is an equivalent semi-scalar product on X

consistent with ll. II I.

Proof. Let A be the infinitesimal generator of an equibounded

semi-group {Tt; t _ 0}. By lemma IV-l, there exists an equivalent semi-

scalar product [.,.] inducing an equivalent norm [].[I I such that
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[Ax,x] _ 0. Define v(x) = [x,x], then by lemma IV-2 and theorem IV-IO

lim i_(x) _ limt+0it (v(Ttx)-v(x)) = t+O --t (llTtxll -llxl121 ) =

=_( llTt xll )t=0+ "2 t+01im[ATtx, Ttxl = 2[Ax,x] =< O.

By theorem 111-12, moreover, for any I > 0, I e p(A) (the resolvent set

of A), it follows by theorem ill-ii that R(i-A) = O(R(i;A)) = X. Con-

versely, if there exists a Lyapunov functional v(x) = [x,x] satisfying

(IV-6) where [.,.] is an equivalent semi-scalar product inducing an

equivalent norm II.IIi, then A is dissipative with respect to [.,.].

By the equivalence relation between the two norms II'll and II.II I, _(A)

is dense in Xl=(X, II'll I) and R(I-A) = X I since D(A) is dense in

X = (X, ll.l I) and R(I-A) = X by hypothesis. It follows by theorem IV-5

that A generates a contraction semi-group (Tt; t _ O} in X I with IITtlII_I

since the dissipativity of A is independent of semi-scalar product on X I.

It is known that semi-group properties are invariant under equivalent

norms and tile equivalence between II'II and II'II I implies that IITtlI_M

for some M > 0, hence {Tt; t _ 0} is an equibounded semi-group in X.

Therefore, the desired result is proved.

For tile case of a negative semi-group, we have tile following

results.

Theorem IV-12. Let A be a linear operator with domain _(A) dense

in X and range R(A) in X. Then A is the infinitesimal generator of a

negative semi-group {Tt; t _ 0} if and only if there exists a Lyapunov

functional v(x) = [x,x] such that

2 (x _ V(A), 8 > 0)
+(x) = 2[Ax,x] _ -2811xli I

and _(I-(8I+A)) = X where [.,.] is an equivalent semi-scalar product on

X consistent with II.II 1.

60



Proof. The proof is essentially the sameas for theorem IV-ll.

The "only if" part follows from lemmaIV-I with _(x) -- 2[Ax,x] < -2BI Jx IJ2
= i'

and the "if" part follows from the corollary of theorem IV-5 with JlTt111__<

__<e -Bt for some B > 0 so that I J'ftJ I __<M e-_t with M > 0 (t __>0).

The above two theorems just proved can be applied to a Hilbert

space H although the linear space H with the norm If-If I induced by the

semi-scalar product [.,. ] may no longer be a Hilbert space. However if

[.,.] is an equivalent semi-scalar product on H, then the space (H, !J. Jl )

is at least a Banach space, and the semi-scalar product can still be used

to define a Lyapunov functional.

Based on the results obtained in the above two theorems, we can

define a pair of functionals v(x) and w(x) in X _U_LLI that if certain con-

ditions _ satisfied by +ho_o _...._ ...._io the stability ........ _^_

stability of the null solution are ensured. These two functionals, which

in a sense are in parallel to those used by Zubov in [24], are defined by

v(x) = Ix,x] (x e X) and w(x) = lAx,x] (x _ I_(A))

where [. ,. ] is an equivalent semi-scalar product and A is the linear

operator in (IV-I). Thus, v(x) is in fact a Lyapunov functional on X as

defined in definition IV-6. The followin_ theorem stated in terms of

these two functionals is an immediate conseauence of theorems IV-f1 and

IV-12.

Theorem IV-13. Let A be a linear operator with _(A) dense in X

and _(I-(BI+A)) = X where _ > 0 and X is a Banach s_ace or a Hilbert

space. If there exist two functlonals v(x) and w(x) defined by

v(x) -- [x,x] x _ x

w(x) = [Ax,x] x e I_(A)
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such that

(i) _(x) = 2w(x); and

(ii) w(x) _ - 8 Ilxl 12 x c D(A)
i

where [.,.] is an equivalent semi-scalar product on X. Then the null

solution of (IV-l) is stable if 8 = 0 and is asymptotically stable if

8>0.

Proof. Under the assumption of (i) and (ii),

_(x) = 2[Ax,x] _ -28 l lxl I_ x c D(A).

Thus by hypotheses all the conditions in theorems IV-f1 and IV-12 are

satisfied for 8 = 0 and 8 > 0, respectively. These imply that A generates

an equi-bounded or negative semi-group depending on 8 = 0 or 8 > O. The

stability or asymptotic stability of the null solution follows from the

equibounded or negative property of a semi-group respectively.

Remark. Under the assumptions of the above theorem, the condition

R(I-(BI+A)) = X in the theorem can be weakened by assuming that R( _ I-A)=X

for some _ > O. This is due to the fact that the condition R(I-(BI+A))=X

can be replaced by R(%I - (BI+A))=X for sufficiently large % (e.g., see

= > B can be chosen such[23], p. 250) and thus for any B > 0 a number %o

that R((_o-B)I-A) = X. This will be satisfied if R(_I-A) = X for some

> 0 since by lemma V-I in the next chapter the condition R( _ l-A) = X

for some _ > 0 and the disslpativity of A imply that R( _ l-A) = X for

every = > O.

Thus in case of a Hilbert space, the Lyapunov functional v(x)

can be constructed from an equivalent semi-scalar product other than an

equivalent inner product. The importance of theorems IV-If and IV-12

lies in the fact that the existence of a Lyapunov functional alone does
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not necessarily ensure the existence of a solution to (IV-l), and in

fact the proof of the existence of a solution to (IV-I) is, in Keneral,

rather complicated. However, under the additional conditions _(A) = X

and _(I-A) = X the existence of a solution with any initial element

x _ _(A) is assured. This assurance makes the stability of a solution

meaningful.
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V. STABILITY THEORY OF NONLINEAR TIME-INVARIANT

DIFFERENTIAL EQUATIONS IN HILBERT SPACES

Many physical and engineering problems are formulated by

differential equations, often, by nonlinear partial differential

equations. Since the stability problem of solutions to partial

....... ,,._=_ _=L_ULL_ O_CUL_ _n many fields of science the szudy

of the stability behavior of solutions to partial differential

equations has been extensively investigated in recent years. How-

ever, most of this work is concerned with specific partial differ-

ential operators and sometimes the existence of a solution is assumed.

In order to unify a theory for a class of partial differential equa-

tions and to develop a stability theory on this class, it is desirable

to consider a general nonlinear operator from a function space into

itself. In this chapter, Hilbert spaces are taken as the underlyin_

spaces, and only in some special cases (section C), real Hilbert spaces

are considered.

Consider the nonlinear operational differential eouation

dx(t_____)= Ax(t) (t > 0) (V-l)
dt =

where the unknown x(t) is a vector-valued function defined on [0, _)

to a Hilbert space If, and A is a given, in general, nonlinear operator

with domain _(A) and range R(A) both contained in H. The object of

this chapter is to develop criteria for the stability and the asymptotic

stability as well as the existence and uniqueness of solutions to (V-l).

The stability and the asymptotic stability properties of the

solutions of (V-l) are developed in terms of nonlinear contraction and

negative contraction semi-groups. By the introduction of an equivalent
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inner product, these properties are related to the existence and the

construction of a Lyapunovfunctional which is a direct extension of

the linear case due to Buis [3]. Finally, the semi-linear differential

equation

d x-- A x + f(x) (V-Z)
dt o

is discussed as a special case where A ° is a linear closed operator

and f is a nonlinear function defined on a real Hilbert space H. It

turns out that if A is a self-adjoint operator in H or in a topolo_i-
o

cally equivalent Hilbert space HI, the conditions imposed on A o

are particularly simple.

A. Nonlinear Semi-groups and Dissipative Operators

In order to describe the results in this and the following

sections, it is necessary to give some basic definitions.

Definition V-l. Let H be a Hilbert space. The family

{Tt; t $ 0} is called a continuous semi-group of nonlinear contraction

operators on 11 or simply (nonlinear) contraction semi-group on H if

and only if the following conditions hold:

(i) for any fixed t _ 0, T t is a continuous (nonlinear)

operator defined on H into H;

(ii) for any fixed x e H, Ttx is strongly continuous in t;

(iii) TsT t = Ts+ t for s, t => 0, and To=l (the identity operator);

(iv) [[Ttx-TtY[l _ [[x-y[[ for all x,y, e H and all t _ O.

If (iv) is replaced by

(iv') llTtx-TtYll _ e-Btllx-yll (B>0) for all x,y E H and

all t > 0,
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then {Tt; t _ O} is called a (nonlinear) negative contraction semi-group

on II. Tile supremum of all the numbers 8 satisfyin_ (iv') is called the

contractive constant of {Tt; t _ 0}. For a subset _ of H, the family

{Tt; t _ 0} is said to be a nonlinear contraction (negative contraction)

semi-group on Q if the properties (i)-(iv) ((i)-(iv')) are satisfied for

Definition V-2. The infinitesimal generator A of the nonlinear

semi-group {Tt; t _ 0} is defined by

w-lim ThX-X
Ax =

h+0 h

for all x E H such that the limit on the right-side exists in the sense

of weak convergence.

Definition V-3. An operator (nonlinear) A with domain D(A) and

range R(A) both contained in a Hilbert space is said to be monotone [18]

if

Re(Ax - Ay, x-y) _ 0 for x, y e D(A). (V-3)

The operator A is called dissipative if -A is monotone; and A is called

strictly dissipative if there exists a real number 8 > 0 such that

- (A + 81) is monotone.

It follows from the above definition that

Re(Ax - Ay, x-y) _ 0 for x, y e _(A) (V-4)

if and only if A is dissipative; and

Re(Ax-Ay, x-y) _ - B (x-y, x-y), B > 0 x,y E V(A) (V-4)'

if and only if A is strictly dissipative. The supremum of all the numbers

8 such that (V-4)' holds is called the dissipative constant of A. Note

that these conditions coincide with the usual definitions of dissipativity

when A is a linear operator (see definition 111-12).
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The definition of a monotone operator has been extended to

the case when A is an operator in a Banach space X. In this case, A

is said to be monotone if

I lx-y + _ (Ax - Ay) ll >_ llx-yll for all _ > 0 and x,y£ D(A). (V-3)'

Let X* be the set of all bounded semi-linear forms on X; that is, the

pairing between x E X and f e X* denoted by <x, f> is linear in x and

semi-linear in f (If X is a Hilbert space, X* is identified with X and

<.,'> with the inner product in X). For any fixed x e X, define

F(x) = {f e X*; <x,f> = I lxll 2 = I Ifll2}.

Then it can be shown that [ii] (V-3)' is equivalent to

Re <Ax - Ay, f > _>_0 for some f e F(x-y), x,y e _(A). (V-3)"

Note that the inequality (V-3)" is not required to hold for every f e

F(x-y). Hence if X is a Hilbert space, (V-3)" is reduced to (V-3),

since in this case F(x-y) = {x-y} consists of a single element and

Re <Ax-Ay, f> -- Re(Ax-Ay, x-y).

The condition (V-3)' implies that (I + aA) -I exists and is LiDschitz

continuous for all e > 0, where I + _A is an operator with domain Q(A)

which maps x into x + _Ax. As to the domain of (I + _A) -I, we have the

following lemma (see [ii]) which was proved essentially by Komura [13]

(see also [19]).

Lemma V-I. Let A be monotone. If the domain of (I + _A) -I is

the whole of X for some e > 0, then the same is true for all _ > O.

Hence for a monotone operator A, the operator (I + cA) -I has

domain X either for every _ > 0 or for no _ > 0.

Definition V-4. If A is a monotone operator such that _((I+_A)-_=

=R(I+_A) = X for every _ > 0 (or for some e > 0), then A is said to be

m-mono tone.
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Becauseof the generality of the problemconsidered in [Ii],

the theoremsdeveloped in that paper are somewhatcomplicated. How-

ever, in case the operator A in (V-l) is independent of t, as in this

chapter, those theorems are relatively simple and can he stated in

terms of non-linear contraction semi-groups. Now we restate the main

theorems in [ii] when A in (V-l) is independent of t.

Theorem V-I. Let X and X* be both uniformly convex spaces, and

let -A be m-monotone. Then A is the infinitesimal _enerator of a non-

linear contraction semi-group {Tt; t _ O} on D(A) such that for any

x e _(A), Ttx is the unique solution of (V-l) with the initial condition

T x = x. A solution x(t) of (V-l) satisfies: (i) For each x(O) e Q(A),
o

x(t) e _(A) for all t _ 0; (ii) x(t) is uniformly Lipschitz continuous

in t; (iii) the weak derivative of x(t) exists for all t _ 0 and eauals

Ax(t); (iv) the strong derivative dx(t)/dt = Ax(t) exists and is strong-

ly continuous except at a countable number of values t.

Through out this chapter, conditions (i)-(iv) of the above theorem

specify what is meant by a solution of the differential equation of the

form (V-l). It should be remarked here that except for the assumption

of m-monotonicity, the operator A is arbitrary. This is different from

much of the work on nonlinear evolution equations in Hilbert spaces or

in Banach spaces in which only semi-linear equations of the form (V-2)

were considered (cf. Browder [i], Kato [9]). This latter type of equa-

tion will be discussed in a later section by applying the results for

the _eneral form (V-l).

It is clear from the above theorem that if A is dissipative in

the sense of (V-4) and X and X* are uniformly convex, then an equilibrium
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solution (or a periodic solution) if it exists, would be stable by

the contraction property of the semi-group. However, it is not

trivial to relate exponentially asymptotic stability directly to

such a property. If A is linear and is the infinitesimal generator

of a contraction semi-group {Tt; t _ 0} of class Co, then the family

{e-_tTt; t _ 0} for some 8 > 0 is a negative contraction semi-group

with the infinitesimal generator A - 8I. But when A is nonlinear,

the contraction seml-group {Tt; t _ 0} generated by A is nonlinear

so the family {e-StTt; t _ 0} is not, in general, a semi-groupand since

property (ill) in definition V-I does not hold. However, with a slight

modification, necessary and sufficient conditions for the exponentially

asymptotic stability analogous to the linear case still holds. This

can be achieved by using the negative contraction semi-group property.

Before doing this, we show in this section some basic results which

will be needed in the later sections. We leave the development of

stability and asymDtotic stability to section B of this chapter in which

we introduce the concept of equivalent inner product.

Theorem V-2. Let A be a nonlinear operator with domain V(A)

and range _(A) both contained in a Hilbert space H such that _(I-A)=H.

Then A is the infinitesimal generator of a nonlinear contraction semi-

group {Tt; t $ O} on Q(A) if and only if A is dissipative (i.e. -A is

monotone).

Proof. Sufficiency: suppose A is dissipative, (i.e. -A is

monotone). Then -A is m-monotone, for by hypothesis, _(I+(-A)) =

R(I-A) = H. Since H* is identified with H, it is also a Hilbert space.

Thus H and H* are both uniformly convex. The sufficiency follows from

theorem V-I.
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Necessity: Let A be the infinitesimal generator of a non-linear

contraction semi-group {Tt; t __>0} on D(A). Then for any x,y e _(A)

Re(h-l(ThX-X)-h-l(Thy-y), x-y) = h-iRe[(ThX-ThY, x-y)- (x-y, x-y)]

< h-l[llThX - ThYll IIx-Yll - llx-yll 2] = h-lllx-yIl[IIThX-ThYll-

-IIx-yll] __<o

for all h > 0 since {Tt, t __>0} is contractive. Letting h+O in the

above inequality, we have, by the continuity of inner product and by

definition V-2

Re(Ax- Ay, x-y) < 0 for any x,y e _(A).

Hence the theorem is proved.

It should be noted that in the above theorem, it is not assumed

that the domain of A is dense in H. However, if A is a linear operator

in a Hilbert space, the m-monotonicity of -A implies that _(-A) is dense

in tt (cf. [ii]), and the above theorem is reduced into the well-known

results due to Lumer and Phillips [15]. But it is not known yet whether

or not _(A) is dense in H if A is a m-monotone nonlinear operator. It

will be shown that the nonlinear contraction semi-grou D {Tt; t $ 0} can be

extended by continuity to a nonlinear contract%on semi-group on V--_), the

closure of _(A). Hence if D(A) is dense in H, {Tt; t $ 0} can be extended

to the whole space H which is a direct Eeneralization of a strongly con-

tinuous semi-group of class C o . The condition _(I-A) = H can also be

weakened by assuming R(I-aoA) = H for some s ° > 0 since the monotonicity

of -A implies: (i) the existence of (I-aA) -I for all _ > 0, and (ii)

if _((I-_oA)-i ) = H for some _ > 0, then O((I-aA) -1) = H for all a > O.o

The nonlinear contraction semi-group {Tt; t $ 0} generated by A

in Theorem V-2 can be extended t o the closure _(A) denoted by D-_-_. In
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order to do this_ we consider the approximate equation of the form

dx (t)
n

= A x (t) Xn(0) = x _ H, n = 1,2,... (V-5)dt n n

where A -- A(I-n-IA) -I, and show the following lemma which is proved
n

based on some of Kato's work in the construction of a solution to (V-I).

Lemma V-2. Let A be a dissipative operator, and let R(I-A)=H.

Then for any x E H there exists a unique solution Tt(n)x of (V-5) which

(n)
is continuously differentiable in the strong topology such that T o x =

= x for each n=l,2,.... Moreover, for any x e(_,Tt(n)x conver_es

uniformly in t as n + =, and for x k e _(A) such that Xk+X as k->_

lira T_n)x = lira lira T(n)xk lira lira _(n)xk" (V-6)n-_ n-_ k-_= t = k-_= n -_ _t

Proof. The operator A = A(I-n-IA) -I is defined everywhere on
n

H for each n since -A is monotone and by lemma V-I _((I-A) -I) = I_(I-A)=II

implies _((I-n-IA) -I) = H for every n. A is dissipative for each n and
n

satisfies llAnX-AnYll _ nllx-yll (cf. Kato [Ii]). Hence for each n, A n

satisfies the following conditions:

(i) A is continuous and carries bounded subsets of H into
n

bounded subsets of H since llAnXll _ llAnYol I + nIIx-yll _ IIAnYol I +

+nllxll+nllYol I where Yo is a fixed element in H.

(ii) For each fixed _, (AnX, AnY,X-y)_ nllx-yll 2 since IIAnX-Anyll

nl Ix-yl I. The above conditions imply that for any x E H there exists

a unique solution Tt(n)x which is continuously differentiable in the

strong topology such that T (n)x = x for each n (cf. Browder [I] or Kato [9]).
o

It can be shown by the dissipativity of A n that

I lrt(n)x-Tt(n)yll _ l lx-yll x,y c H (V-7)

uniformly in t and n (see lemma V-5 with T_x = x(t)). Since the solution
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T x of (V-l) is constructed as the limit of T (n)x as n + _ and for
t t

lim Tt(n)yy E _(A) the strong limit TtY = n-_ converges uniformly in t

(cf. [ll]), it follows by (V-7) that Tt(n)x converges uniformly in t

for x _ _(A). Moreover by (V-7) for x k e D(A) and x k + x as k +

lim (n) x _ Tt(n) lirak__ lIT t Xkl I < k+ _ llX-Xkl I = 0

uniformly in t which is the same as

(n)x _- lira (n)
T t k+ _ T t x k uniformly in t.

This last equality relation and the fact that

lim lim
I ITt(n)x- T

k-_= n-_ t

imply that

lim lim l lX_Xkll = 0(n)xkl I < k_ n__

lim T (n)x lim lim (n)
n -_° t = n-_ k-_o Tt

Thus the lemma is proved.

lim lim T (n)x k.Xk = k-_o n-_o t

Following the results of lemma V-2, it is natural to extend

the nonlinear contraction semi-group {Tt; t $ 0} to tile closure of

D(A) by the relation (V-6). More precisely, we have the followin_

Lemma V-3. Let {Tt; t _ O} be the nonlinear contraction

(negative contraction) semi-group generated by A on _(A) in theorem

V-l.

semi-group {_t; t $ 0} on D(A) by definin_

- lim
Ttx = k__o Ttx k for x e Q(A)

where xk c _(A) and x k + x as k + _.

Proof. The limit defined by (V-8) exists and is independent

Then it can be extended to a contraction (negative contraction)

(v-s)

of the choice of x k in I)(A).

that for fixed t > 0

fIT tx k - Ttx j II =<

The first assertion follows from the fact

l lxk - xjl I + 0 as k,j +
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which shows that {Ttx k} is a Cauchy sequence and so it conver_es to

an element in H. To see that (V-8) is unambiguously defined, let

Yk e V(A) such that Yk + x. Then

lim lim
k__ l lTtx k - TtYkl I __<k__ Ilxk-Ykl I = 0

_t x lira = lira TtVk" Next we show thatwhich implies that = k+ _ Ttx k k__

{_t; t _ 0} is a nonlinear contraction semi-grou_ from P(A----_into

_--_. For any fixed t and any pair x, y e(_with Xk, Yk e _(A)

and xk + x, Yk + y' we have

I I_t x - _tyll = lira _ lirak-_ llTtXk TtYkll < IIXk-Ykl I = lx-yll= k+_ "

= tim i!TtXk TtYkl ! < lim e-Bt] .... ,l=e-Bt(!!_t x - _t y![ k-_o - = k _° '_ Jk Ilx-Y

Thus _t is, for each t _ Oj continuous and contractive (negative

contractive) on _(A----_. Ttx is continuous in t for any fixed x e _--_Y.

To see this, let xk e _(A) and x k _ x. Then

_t x !im lim !im Tt(n)x k lim T (n)x= k-_ TtXk = k-_ n ->_ = n-_ t

by using lemma V-2. Since Tt(n) is continuous in t and converges

uniformly in t in the strong topology, we have

lim _t x lim lim (n)x = lim lim (n) xt+0 = t+0 n-_ Tt n -_ t40 Tt = x.

Hence for any t > 0

lim ]i_t+h x - _ xl I lim lim lim limh-_O t = h-_O k-_o I ITt+hXk " TtXkll < h-_O k-_= I IThXk-Xk

lim i]_hX_Xl I = 0h+0

since Tt+hX = TtThX and T t is contractive on V(A). (Similarly for a

negative contractive semi-_roup). The continuity of _t x in t is _roved.

To show that TsT t = Ts+t, we first show that _t maps P(A) into _(A).

I/.
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This follows directly from definition since for any x e D(A) with

xk e _(A) and xk -_ x, then Ttx k e I)(A) for all k which implies that

_t x = k-_limTtXk E _(_-_. Now if x _ _ then _tx e _ and so

__ - - lim lim = _s+t xTsTtX is defined. Moreover Ts (Ttx) = k-_° Ts (TtXk) -- k÷_ Ts+tXk

since the limit is independent of the choice of any sequence which

lim

converges to _tx. Note that T_xIL_ -_ _x._ Furthermore, _oX = k.w_- ToXk-X- '

that is _ = I on (_. Therefore {_t; t > 0} is a nonlinear contractiono =

(negative contraction) semi-group, and the lemma is proved.

Owing to the importance of asymptotic stability in the study

of tile stability theory of differential equations, it should be desir-

able to extend theorem V-2 to the case where A is the infinitesimal

generator of a nonlinear negative contraction semi-group. For this

purpose, we first prove the following lemmas which will be used in the

proof of the next theorem and which will play an important role in the

construction of a Lyapunov functional.

Lemma V-4. Let {x } and {yn } be two sequences in H such thatn
w w

x n + x and Yn _ Y- as n _ _ where + denotes weak convergence. Then

lim (Xn,Yn) = (x,y) x,'y e H.n-+oo

Proof. Since a weakly convergent seauence is strongly bounded

i.e., l lXnl I < = for all n (theorem III-8), it follows by the strong

convergence of {yn } that

lim l(Xn ' yn_y) l< lim llXnll iIyn_yll = 0n-_o n-_

which implies that

lim (Xn,Yn) = lim (Xn,V) "n -_ n-_

By the weak convergence of Xn, we have

lim lim (Xn,Y) = (x,y).n-_o (Xn,Y n) = n__
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Lemma V-5. Let x(t), y(t) be any two solutions of (V-l) (in

the sense of theorem V-I). Then l lx(t)-Y(t)II 2 is dlfferentiable

in t for each t __>0_ and is given by

d_ i ix(t)_y(t)l 12= 2Re(Ax(t)-Ay(t), x(t)-y(t)) for each t > 0.(V-9)
dt =

Proof. For any fixed t > 0, let h # 0 and lhl < t so that

x(t+h) and y(t+h) are defined. By hypothesis, h-l(x(t+h)-x(t)) w Ax(t)

and h-l(y(t+h)-y(t)) w Ay(t) we have by the continuity of inner product

and by lemma V-4 that

lira h-I
h-_O [I Ix(t+h)-y(t+h) I 12 iIx(t)_y(t ) i12] lira h-i- = h_ 0 [ (x(t+h)-y (t+h) ,x(t+h)-

lira h-I
y(t+h))-(x(t)-y(t),x(t)-y(t))] -- h-_0 [(x(t+h)-y(t+h)-(x(t)-y(t)),x(t+h)-

-y (t+h)) + (x(t)-y (t), (x (t+h)-y (t+h)) - (x(t)-y (t)) ) ]

= lira h-l[ (x(t+h)-x(t),x(t+h)-y(t+h))-(y(t+h)-y(t) ,x(t+h)-y(t+h)) +
h-_O

(x(t)-y(t) ,x(t+h)-x(t)) - (x(t)-y(t) ,y(t+h)-y(t) ) ]

-- (Ax(t),x(t)-y(t)) - (Ay(t),x(t)-y(t)) + (x(t)-y(t),Ax(t)) - (x(t)-y(t),Ay(t))

-- (Ax(t)-Ay(t),x(t)-y(t)) + (x(t)-y(t),Ax(t)-Ay(t))

= 2 Re(Ax(t)-Ay(t),x(t)-y(t)).

I1ence, I lx(t)-y(t)l 2 is differentiable and (V-9) holds for t > 0. For

t = O_ the above is still valid by takin_ h > 0 and h + 0 in place of

d
h -_ 0 and by defining _ I Ix(t)-y(t)l 12 at t = 0 as the right-side limit.

The following theorem is an immediate extension of theorem V-2

and is fundamental for the construction of a Lyapunov functional from

which the asymptotic stability of solutions to (V-I) can be ensured.

Theorem V-3. Let A be a nonlinear operator with domain _(A)

and range R(A) both contained in a Hilbert space II such that R(I-A) = H.

Then A is the infinitesimal generator of a nonlinear negative contraction
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semi-group {Tt; t _ O} with contractive constant 8 on _(A), that is

IITtx-TtYll _ e-St IIx-yll x, y a D(A) (v-10)

if and only if A is strictly dissipative with dissipative constant 8,

that is

Re(Ax-Ay, x-y) _ - 8(x-y, x-y) x,y e D(A). (v-n)

Proof. Necessity: Let A be the infinitesimal _enerator of

{Tt; t $ O} such that (V-lO) is valid. Then

IlTtx-TtYll2 _<e-2S _ilx_y[l 2 for all t > 0

since both side of (V-10) are positive.

(V-lO) '

SubtraetinK I lx-yI 12 and then

dividing by t > 0 in the above inequality, (V-IO)' becomes

t-l(i iTtx_TtY I {2_{ ix_y 112) : t-l(e-28t_l) {ix_y { {2

As t + O, we obtain

t > O.

d___i JTtx_TtY j i2 < -2611_-_112dt t=0 = " "

Since for any x, y e _(A), Ttx , TtY are solutions of (V-l), it follows

by lemma V-5 that

Re(Ax-Ay, x-y) < -B(x-y, x-y) x, y e D(A).

Sufficiency: Let (V-II) holds. Then A is dissipative and by theorem

V-2, it is the infinitesimal generator of a nonlinear contraction semi-

group {Tt; t _ O} on Z)(A). Moreover, by lemma V-5

d llTtx_Ttvll2d--E = 2Re(ATtx-ATtY,Ttx-TtY) _ -2811Ttx-Ttvll 2 t$O

since Ttx , TrY are solutions of (V-l). By integrating the above inequal-

ity, we have

[{Ttx-TtYll 2 =< e -28t ilx_y{l2

and the result follows.
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Theorem V-3 is a direct generalization of theorem I' in [21]

when X is a Hilbert space, for the strict dissipatlvity in theorem

V-3 is a generalization of the strict dissipatlvity in the sense of

[21]. Moreover, it can be shown (for instance, see [23]) that the

condition R((I-8)I-A) = H in theorem i' of [21] can be replaced by

R((%-8)I-A) = H for sufficiently large % > 0. Hence for any 8 > 0,

we can choose _ such that % - 8 > 0 which implies that the condition

R((I-B)I-A)= H can be replaced by R(I-(%-B)-IA) = H for %-B > O.

However, the latter condition is equivalent to R(I-A) = H in virture

of lemma V-l, since under the assumption of (V-IO) or (V-II) in

the theorem, -A is monotone. The equivalence between R(I-(%-B)A)=H

and R(I-A) = I{ follows directly from lemma V-I.

B. Stability Theory of Nonlinear Time-invariant E_uations

The object of this section is to develop some criteria in

terms of the operator A so that tile stability or t_,e asymptotic

stability as well as the existence and uniqueness of solutions to

(V-l) is assured. In the particular case of partial differential

operators, these criteria are in terms of the properties of the

coefficients of the original system of differential equations and

possibly include the given boundary conditions. The results obtained

in the previous section serve as the basis for the development of

a stability theory which can be applied to certain classes of nonlinear

partial differential equations. Before showing these results, it

would be appropriate to give some definitions of stability and

asymptotic stability of an equilibrium solution.
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Definition V-5. An equilibrium solution of (V-l) is an element

x in I_(A) satisfying (V-l) (in the weak topology) such that for any
e

solution x(t) of (V-l) with x(0) = x
e

I I (t)-xell = 0 for all t > 0.

It follows from the above definition that if x(t) is a solution

to (V-l) with x(0) = x, then it is an e_uilibrium solution if and only

if Ax(t) = 0 for all t _ 0. To show this, let Ax(t) = 0 where x(t) is

a solution of (V-I). Then by theorem V-I the stron_ derivative dx(t)/dt

= Ax(t) = 0 exists and is strongly continuous except at a countable

number of values t. This means x(t) = x (a constant vector) except at
O

a countable number of values t. But x(0) = x and since any solution of

(V-l) is strongly continuous it follows that x(t) = x for all t _ 0

(see also theorem III-10). Conversely, let x(t) be an eauilibrium sol-

ution of (V-I). Then

lim h-i
(Ax(t),z) = (dx(t)/dt, z) = lim h-l(x(t+h)_x(t),z)= h+0 (0,z) = 0h+0

for every z _ 11 and every t > 0. Since x(t) is a solution of (V-l),

x(t) e 0(A) and Ax(t) e H for each t > 0; thus the orthogonality of

Ax(t) to every z in 11 implies that for each t > 0, Ax(t) = 0. Hence

the existence of an equilibrium solution is equivalent to the existence

of a solution to (V-l) satisfying

Ax(t) = 0 for every t > 0 •

Definitions of stability, asymptotic stability and exponentially

asymptotic stability of an equilibrium solution are the same as given

in definition IV-3. However, we introduce here one more definition of

stability region.

Definition V-6. Let x(t) be a solution to (V-l) with x(0) = x.

A subset _ of H is said to be a stability region of the equilibrium
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solution x if for any e > 0 there exists a 6 > 0 such that
e

x e Q and l lX-Xel I < 6 imply I Ix(t)-Xei I < e for all t _ 0

The dissipativlty in theorems V-2 and V-3 are defined with

respect to the original inner product of the space. Since the semi-

group property is invariant under equivalent norms, the possibility

occurs that by defining other inner products inducing equivalent

norms, the semi-group could be made contractive and the infinitesimal

generator dissipative. This follows from the fact that stability

and asymptotic stability are invariant under equivalent norms and

may be verified by the dissipativity of A with respect to an equi-

valent inner product.

Definition V-7. Two inner products (. , -) and (. , ")I

defined on the same vector space H are said to be equivalent if and

only if the norms II'II and ll.li 1 induced by (. , .) and (. , ")i

respectively are equivalent, that is, there exists constants 6, y

with 0 < 6 < y < _ such that

 !i II IlxliI  Itxli forallx H.

The Hilbert space H I equipped with tile inner product (. , ._ is said

to be an equivalent Hilbert space of H and is denoted by (H, (. , -)i )

or simply by H I.

Under the equivalent inner product (. , ")I' the vector space

(H, (- , .)i ) is a Hilbert space if and only if the original space

(H, (. , .)) is, since the completeness of one space implies the

completeness of the other. This fact enables us to weaken the dlssi-

pativity condition on the operator A in theorem V-2 and V-3.

Theorem V-4. Let A be a nonlinear operator with domain _(A)

and range R(A) both contained in a Hilbert space H = (H, (. , .)) such

(v-12)
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that _(I-A) = H. Then A is the infinitesimal generator of a nonlinear

contraction (negative contraction) semi-group {Tt; t $ 0} on Q(A) in

an equivalent }filbert space (H, (. , .)i ) if and only if A is dissi-

pative (strictly dissipative) with respect to (''')i" In this case

the family {Tt; t _ 0} is a nonlinear (nonlinear negative) semi-group

{Tt; t $ 0} on O(A) in H. (i.e. conditions (iv) and (iv') are replaced

by llTtx-TtYl I _ MI Ix-Yll and I ITtx-TtYll _ Me-StlIx-yll respectively

for some M > I).

Proof. Since the inner product (. , ")i is e_uivalent to (. , .),

the space H 1 = (H, (. , .)i ) is a }filbert space and R(I-A) = H I. Hence

by considering H 1 as the underlyin_ space, all the conditions in theorem

V-2 (theorem V-3) are satisfied implying the first assertion is proved.

To show the second part of the theorem, let A be the infinitesimal gen-

erator of a nonlinear contraction (negative contraction) semi-_rouD

{Tt; t _ 0} on _(A) with respect to the norm II.lll, that is

IITtx-TtYltl_ Ilx-Yll I (ll_tx-TtYll 3 _ e-_tllx-Y[ll )

By the equivalence relation (V-12), we have

. . < cllfx-yll <  6-111x-vll]lTtx-Tt vII _ 6-11lTtx-TtVlll = 1 = "

(IlTtx-TtYll g Y6 -1 e -Bt IIx-yIl) x, y _ O(A).

Since the properties of a semi-group in definition V-1 remains unchanged

under equivalent norms except for possibly the contraction property, it

follows that {Tt; t _ O} is a nonlinear (nonlinear negative) semi-group

on O(A) with respect to the original norm (with M = y_-l).

II_" rThe application of tile _m ect method" to the stability problem

consists of defining a Lyapunov functional with appropriate properties

x,y e V(A).
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whose existence implies the desired type of stability. In order to

give the definition of a Lyapunov functional on a complex Hilbert

space, we first introduce the following:

Definition V-8. Let II be a Hilbert space, and let V(x,y) be

a complex-valued sesquilinear functional defined on the product space

H x H (i.e. V(_ix I + _2x2,Y) = elV(Xl,Y) + _2V(x2,Y) and V(X,_lYl+B2Y2 )=

=_iV(X,Yl ) + _2V(x,Y2)). Then V(x,y) is called a defining sesquilinear

functional if it satisfies tlle followin_ conditions:

(i)

(il)

(iii)

Note that condition (ii) implies that V(x,v) is continuous both in x and

in y.

Definition V-9. Let V(x,y) be a defining sesauilinear functional.

Then the scalar functional v(x) defined by v(x) = V(x,x) is called a

Lyapunov {unctions].

By applying a theorem due to Lax and MilF.ram, we show the

followin_.

Lemma V-6. Let {x } and {yn } be two sequences in H = (H, (.,-))
n

w

such that x -_ x and Yn -_ v as n -> =. Then
n

lim V(xn,Yn) = V(x,y) x,y e H.
n-wo0

Proof. By definition of V(x,y), all the conditions (i.e.

sesquilinearity, boundedness and positivity) in the Lax-Mil_ram

theorem (see theorem III-7) are satisfied. Thus, there exists a

bounded linear operator S with a bounded linear inverse S-I such that

V(x,y) = (x, Sy) for all x, v e H. (V-13)

V(x,y) = V(y,x) (symmetry)

IV(x,y) l __<Yl Ixll l lyll for some y > 0 (boundedness)

V(x,x) > 6 I Ixl 12 for some 6 > 0 (positive definiteness)
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Since a weakly convergent sequence is stronF_ly bounded so that

Ifx II < = for all n, it follows by the sesauilinearitv of V(x,y)
n L

and by the relation (V-13) that

lim l(V(xn,Yn)_ V(xn,Y)) I lim iV --n_ = n-_ (Xn,Vn_Y) l lim l(Xn,S(yn_y))l<n-_oo =

< lira iIXnll llsl I llyn_yll = 0
_-- n-+oo

which shows that

lim V(Xn ' yn) = lim V(Xn,Y).
n-_o n-_oo

Again, by the relation (V-13) and by the weak convergence of {x }
n

lim V(xn,Y ) limn-_ = n_ (Xn' Sy) -- (x, Sy) = V(x, v).

Therefore, the lemma is proved by the above two eauality relations.

It follows from the above definitions and lemma V-6 that tile

following results can easily be shown.

Lemma V-7. For any x e II.

6111xl 12 __< v(x)< yl I Ixl 12 (V-14)

and for any pair of solutions x(t), y(t) of (V-I)

_(x(t) - y(t)) = 2Re V(Ax(t) - Ay(t), x(t) - y(t)) (V-15)

where _(z(t)) denotes the derivative of v(z(t)) with respect to t.

Proof . (V-14) follows from the definition of V(x,y). To

show (V-15), note that by the sesquilinearity of V(x,y) it is easily

seen that

V(x-y, x+y) + V(x+y , x-y) = 2(V(x,x) - V(y,v)) for any x,y e H,

and by the symmetry of V(x,y), the above equality implies that

1

v(x) - v(y) -- V(x,x) - V(y,y) = _(V(x-y,x+y) + V(x-y,x+y)) = Re V(x-y,x+y).

Hence for any fixed t __>0 and for any number h

V(x(t+h)-y(t+h))-v(x(t)-y(t)) -- Re V(x(t+h)-x(t)-y(t+h)+y(t) ,x(t+h)+x(t) -

- y (t+h)-y (t)).
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Dividing both sides by h in tile aboveequality, and by the sesouilin-

earity of V(x,y), this becomes

h-I [v(x (t+h)-y (t+h))-v(x(t)-y (t)) ] = ReV(h-l (x (t+h)-x (t))-h -I (y (t+h)-y (t)),

x (t+h)+x (t)-y (t+h)-y (t))
w

Since 11-1(x(t+h)-x(t)) + Ax(t) and x(t+h) + x(t) as h _ O, (similarly

these two limits hold by replacing x by y) wehave by lemmaV-6, as

h+O

d
d-_v(x(t)-y(t)) -- ReV(Ax(t)-Ay(t),2x(t)-2y(t))=2Re V(Ax(t)-Ay(t),

Thus (V-15) is proved for t > 0. For the caseof t -- 0, we ta_e h > 0

and let h + 0. Therefore (V-15) holds for all t __>0 by defining

_(x(0)-y(0)) as the right-side limit at t = 0.

It is easily seen from the above lemmathat if wedefine

V(x,y) = (x,y) where (.,.) is the inner product of the llilbert s_ace

H, then _(x(t)-y(t)) __<0 along any two solutions x(t) and y(t) if A

is dissipative. This follows from (V-15) that _(x(t)-y(t)) =

2Re(Ax(t)-Ay(t), x(t)-y(t)) for all t __>0 andx (t), y(t) e _(A).

Conversely, if _(x(t)-y(t)) < 0 and _(x(0)-y(O))=2Re(Ax(0)-Ay(0),

x(0)-y(0)) where x(0) -=x, y(0) ---y are any two elements in D(A), then

A is dissipative. The aboveargumentholds true for the strict dissi-

pativity of A and the relation _(x(t)-y(t))< -2BI Ix(t)-y(t)l 12 where

is the dissipative constant of A. Hencewehave the followin_

theoremwhich is equivalent to theoremV-2 (theorem V-3).

Theorem V-5. Let A be a nonlinear operator with domain _(A)

and range R(A) both contained in a Hilbert space H such that P_(I-A)=H.

Then A is the infinitesimal generator o f a nonlinear contraction
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(negative contraction) seml-group {Tt; t _ O} on _(A) if and only

if the Lyapunov functional v(x) = (x,x) satisfies

_(x-y) = 2Re(Ax-Ay,x-y) < 0 (_(x-y) = 2Re(Ax-Ay,x-y) < -2811x-yl[ 2)

(V-16)

where x E x(0), y E y(O) are any two elements of D(A).

Proof. Let A be the infinitesimal generator of {Tt; t _ 0},

then for any x E _(A) there exists a solution Ttx of (V-l) with T0x=x ,

and by theorem V-2 (theorem V-3) A is dissipative (strictly dissipative).

Applying lemma V-7 for t = 0

_(x(0)-y(0)) = 2Re(Ax(O)-Ay(O), x(0)-y(0)) (x(O)=x, y(0)=y),

and by tile dissipativity (strict dissipativity) of A, it follows that

_(x-y) = 2Re(Ax-Ay, x-y) _ 0 (_(x-y)=mRe(Ax-Ay,x-Y) _ -2BIIx-yll 2)

where B is the dissipative constant of A. Conversely, let the Lyapunov

functional V(x) = (x,x) satisfy (V-16). Then A is dissipative (strictlv

dissipative) and theorem V-2 (theorem V-3) implies that A is the infinite-

simal _enerator of a nonlinear contraction (negative contraction) semi-

group.

Lemma V-8. Let V(x,y) be a defining sesquilinear functional

defined on the product space II x H. Then

(x,Y)l = V(x,y) x,y e H

defines an inner product (''')I which is equivalent to (.,.).

Proof. By the symmetry and the ses_uilinearity properties of

V(x,y)

(x,Y)l = V(x,y) = V(y,x) = (y,x) I
for any x,y c }[

(_iXl+_2x2,Y)l = V(_iXl+_2x2,Y) = _iV(Xl,_)+a2V(x2,Y) -- _l(Xl, Y)l+_2(x2,Y)l

and
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Hence (.,-)i

that

for any Xl,X2,Y e H; by the positivity of V(x,y)

(x,x) I = V(x,x) _ 611xll 2

so that (x,x) 1 # 0 if x # 0.

is an inner product. The boundedness of V(x,y) implies

(x,x) I = V(x,x) _ yflxll 2.

Therefore, 611xll 2 =< llxII_ _ yIIxll 2 which shows that (.,.)i is

equivalent to (.,.).

Lemma V-9. Let S be a bounded linear operator on a complex

--±_L,eLL space H. If k_x,x) is real for any x e H, then S is self-

adjoint. In particular, if S is positive definite (i.e. there exists

a real number 6 > 0 such that (Sx,x) _ 611x II2 x e H), then S is

self-adjolnt.

Proo____f. Since S is a linear operator, it is easily seen that

for any x, y e II

(S(x+y), x+y) - (S(x-y),x-y) = 2((Sx,y) + (Sy,x)), (V-17)

and on replacing y by iy in (V-17) we have

(S(x+iy), x+iy) - (S(x-iy), x-iy) = -2i((Sx,y) - (Sy,x)). (V-17)'

By multiplyin_ (V-17)' by i and adding to (V-17) yields

4(Sx,y) = [(S(x+y),x+y)-(S(x-y),x-y)] + i[(S(x+iy),x+iy)-(S(x-iy),x-iy)].

Since the above equality holds for arbitrary x, y e H and by hypothesis,

the expressions in brackets are real, we have on interchanging x and y:

4(Sy,x)=[(S(y+x),y+x)-(S(y-x),y-x)] +i [(S(y+ix),y+ix)-(S(y-ix),y-ix)]

= [(S(x+y),x+y)-(S(x-y), x-y)] + i[(S(x-iy) ,_,iy)-(S(x+iy),x+iy)]

= 4(Sx,y) = 4(y,Sx).

Thus (x,Sy) = (Sx,y) which shows that S is self-adjoint. In particular,

if S is positive definite then (Sx,x) is real and so S is self-adjoint.
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From the above two lemmas, the following theorem can easily

be shown.

Theorem V-6. Let H 1 = (H, (.,.)i) be a complex Hilbert space.

An inner product ('")2 defined on the same complex vector space H

is equivalent to the inner product (''')i if and only if there exists

a positive definite operator S e L(HI,H I) such that

(x,y) 2 = (x, Sy) 1 for all x,y e If.

Proof. Suppose that ('")I and (''')2 are equivalent, then

by definition there exists constants 6 and y with 0 < 6 < y < _ such

that

611XIIl< llxli2=< llXIll forallx H

Define V(x,y) = (x,Y)2, then by definition of inner product, V(x,y) is

a sesquilinear functional defined on H 1 x H 1 and that V(x,y) = V(y,x).

Moreover, by the equivalence relation between II'IIi and II" I12

{V(x,y) I = I(x,Y)2 I < IIxll 2 Ilyll 2 < y211xll I Ilyll I and

2
V(x,x) = (x,x) 2 > 6211xl Ii .

Hence by the Lax-Milgram theorem there exists a bounded linear operator

S on I{I such that

(x,y) 2 = V(x,y) = (x,Sy) I for all x,y e II.

The operator S is positive on H I since

(x,Sx) I = (x,x)2 => 62iix I [21 for all x e H.

Conversely, let S e L(HI,H I) be a positive definite operator satisfying

(V-18), then the functional V(x,y) defined by V(x,y) = (x,y) 2 = (x,Sy) 1

is a sesquilinear functional on H I x }I1 since S is linear.

definiteness of S implies that

V(x,x) -- (x,Sx) 1 > 6111xl 12 for some 61 > 0

and that by applying lemma V-9

V(x,y) = (x,Sy)1 = (Sx,y)1 - (y,Sx)1 = V(y-_,x.

%.v _v 2

The positive
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Moreover, since S is a bounded operator we have

IV(x,y) l = l(x,SY)ll < llSll llxll 1 tlYll 1-

Hence V(x,y) is a defining sesquilinear functional. By lemma V-8

(x,y) 2 = V(x,y) defines an equivalent inner product (''')2 of (.,._

which proves the theorem.

Theorem V-6 is, in fact, an extension of theorem IV-1. It

should be noted that the condition of self-adJointness of S is not

reauired since the positive definiteness of S in a complex liilbert

space implies that it is self-adjoint.

Theorem V-7. Let A be a nonlinear operator with domain P(A)

and range R(A) both contained in a Hilbert space H = (ii,(.,.)) such

that _(!-A) = It. Then A is the infinitesi_a! _enerator of a nonlinear

contraction semi-group {Tt; t => 0} on 0(A) in an e_uivalent ttilbert

space 1t1 = (li,(.,.)l) if and only if there exists a Lyapunov functional

v(x) = V(x,x) such that

_(x-y) = 2Re V(Ax-Ay, x-y) < 0 x,y e P(A) (V-19)

where V(x,y) is the defining sesquilinear functional of v(x) on Iix H.

Proof. Let A be the infinitesimal _enerator in the Hilbert

space 111 as given in tile theorem. Then by theorem V-4, A is dissi-

pative with respect to (''')i' that is

Re(Ax-Ay, x-y) I < 0 x,y e _(A).

Define V(x,y) = (x,y) I. Then V(x,y) is a defining sesquilinear func-

tional defined on H x H. To see this, note that V(x,y) is sesquilinear,

V(x,y) = "V(y,x) and by tile relation (V-12)

IV(x,Y) l < IIxl II IlYl II < ¥211xli IlYll for all x,y e H

and

v(x,x) -- IIx1121 --> 62 IIxll 2 for all x,y e H.
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Hence the scalar functional v(x) = V(x,x) = (x,x) I is a Lyapunov

functional on the space H. By lemma V-7, for any x, y e _(A)

_(Ttx-TtY) = 2ReV(ATtx-ATtY, Ttx-TtY) (t > 0).

In particular, for t = 0

_(x-y) = 2ReV(Ax-Ay, x-y) x,y e _(A).

Thus the dissipativity of A with respect to (.,.)i implies that

+(x-y) = 2ReV(Ax-Ay, x-y)=2Re(Ax-Ay, x-Y) 1 < 0.

Conversely, suppose that there exists a Lvapunov functional

v(x) -- V(x,x) such that (V-19) holds, where V(x,y) is a definin_

sesquilinear functional defined on H x Ii. Bv lemma V-8, the func-

tional (x,y) 1 = V(x,y) defines an equivalent inner product of (.,.).

Hence, by the hypothesis (V-19)

Re(Ax-Ay,x-Y)l = ReV(Ax-Ay, x-y) < 0 x,y e I)(A)

which implies that A is dissipative with respect to (''')i" The

result follows by applying theorem V-4.

Theorem V-8. Let A be a nonlinear operator with domain V(A)

and range _(A) both contained in a Hilbert space H = (H,(.,.)) such

that _(I-A) = H. Then A is the infinitesimal _enerator of a nonlinear

negative contraction semi-group {Tt; t > O} on _(A) in an eauivalent

Hilbert space H I = (H, (.,.)i) if and only if there exists a Lyapunov

functional v(x) = V(x,x) such that

+(x-y) -- 2ReV(Ax-Ay, x-y) < -2_ I x-y I 12 x,y e "_(A) (V-20)

for some B > 0 where V(x,y) is the defining sesquilinear functional of

v(x) on tt x 1t.

Proof. The proof is essentially the same as for theorem V-7.

To show the "only if" part, define V(x,y) = (x,y) 1 then V(x,y) is a
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deflnin_ sesauillnear functional defined on H x I{ as has been shown

in theorem V-7. Since A generates a nonlinear negative contraction

semi-group, it is strictly dissipative with respect to (''')i with

the dissipative constant 81 (theorem V-4). Thus bv lemma V-7 and

the equivalence relation between If. If and II.II 1

2 <
_(x-y) = 2ReV(Ax-Ay,x-y)=2P_Ax-Ay,x-y) I _ -28111x-yll I =

-2816211x-Yll 2

for any x, y e V(A) where we have used the relation (V-12). The result

by letting 8=8162. Conversely, let a Lyapunov functionalfollows

v(x) = V(x,x) exist and satisfy the relation (V-20), then by lemma V-8

the functional

(x,y) 1 = V(x,y) for all x,y e H

defines an equivalent inner product (''')i' Hence by (V-20) and the

relation (V-12), we have for any x,y e D(A)

Re(A×-Ay,7-y)I = ReV(Ax-Ay,x-y) _ -8!!x-y!! 2

< __/y2 l lx_vll2

which shows that A is strictly dissipative. Hence the result follows

by applying theorem (V-4).

In theorem V-5 the Lyapunov functional v(x) is defined by the

original inner product and in theorem V-7 v(x) is defined by an equi-

vanent inner product (''')i" If the defining sesquillnear functional

V(x,y) of v(x) satisfies (V-16) and (V-19) respectively, then together

with the assumption _(I-A) = H, A is the infinitesimal generator of

a contraction semi-group on Q(A) in the respective space II and H I. The

contraction semi-group {Tt; t _ 0} generated by A in the Hi-space
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satisfics for any x E V(A) and t > 0

dT tx

(--_-- , z) 1 = (ATtx , z) 1 for every z a H I .

However, if is not obvious that the same equality holds for the inner

product (.,.). In other words, if Ttx is a solution of (V-I) in an

equivalent lll-space , does it imply that it is also a solution of (V-I)

in the original If-space? The answer is affirmative as can be seen from

the following.

Lemma V-10. Let A be the infinitesimal _enerator of a nonlinear

contraction (negative contraction) semi-group {Tt; t > 0} on _(A) in an

equivalent liilbert space IiI -- (I],(.,.)l). Then A is the infinitesimal

generator of a nonlinear (negative) semi-group {Tt; t $ 0} on the same

domain _(A) in the original Hilbert space H = (H, (.,.)).

Proof. By the equivalence relation between the two inner pro-

ducts (.,.) and (''')i' the sesquilinear functional V(x,y) = (x,y)

defined on the product space U 1 x 111 satisfies all the hypotheses in

the Lax-Milgram theorem. Thus there exists a bounded linear operator

S with a bounded inverse S-I defined on all of H such that
1

(x,y) = V(x,y) = (x,Sy) 1 for all x; y e H. (v-21)

By hypothesis, A generates the semi-group {Tt; t $ 0} in H I so that

lim t-l(Ttx_x ' = (Ax,t+0 Z)l Z)l for every z e H. (v-22)

It follows from (V-21) and (V-22) that for each z e H

lim t-l(Ttx_x, z) = lim -i = (Ax,Sz) = (Ax,z)t+0 t+0 t (Ttx-x' SZ)l 1

which shows that A is the infinitesimal senerator of the semi-group

{Tt; t $ 0} on Q(A) in the space H. The fact that {Tt; t $ 0} remains

as a semi-group in ]t is that semi-group property is invariant under
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equivalent norms except for possibly the contraction property. Since

{Tt; t _ 0} is a contraction semi-group in H I and II'l] and II" II

are equivalent, we have by the relation (V-12)

ITtx-TtYll _ y/6 llx-yll x, y e P(A)

(] ITtx-rtYl [ _ y/6 e-_tl Ix-ylI x, y e D(A))

and the lemma is proved.

Corollary. Let the operator A appearing in (V-I) be the

infinitesimal generator of a nonlinear contraction (negative contrac-

tion) semi-group {Tt; t _ 0} on D(A) in the space H I = (If, (.,.)i) so

that for any x e D(A), Ttx is the unique solution of (V-I) with ToX=X.

Then Ttx is also the unique solution of (V-l) with ToX=X in the space

H=(H, (.,.)) where (''')I and (.,.) are equivalent.

Proof. Since (V-21) and (V-22) in the proof of the above lemma

hold for any x,y c II, we have for any x e _(A) and t $ 0

h-_Olimh-l(Tt+hX_Ttx,z ) = h_Olimh-l(ThTtX_Ttx ' SZ)l = (ATtx, SZ)l

= (ATtx , z) for every z E H

which implies that T x is a solution of (V-l) in the space (H,(.,.))
t

since all the other properties listed in theorem V-I remain unchanged

under equivalent norms.

Theorem V-9. Let the nonlinear operator A appearing in (V-l) be

such that R(I-A) = H. If there exists a Lyapunov functional v(x) = V(x,x),

where V(x,y) is a defining sesquilinear functional defined on II x H,

such that for any x, y c _(A)

(i) _(x-y) = 2ReV(Ax-Ay, x-y) _ 0 or

(ii) _(x-y) = 2ReV(Ax-Ay, x-y) _ -2_[Ix-Yll 2 (B > 0)
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Then, (a) for any x e P(A) there exists a unique solution x(t) of (V-l)

with x(0) = x, (b) any equilibrium solution x e (or periodic solution),

if it exists, is stable under the condition (i) and is asymptotically stable

under the condition (ll), and (c) a stability region of x is D(A) which
e

can be extended to D(A), the closure of _(A), in the sense of lemma V-3.

If, in addition, 0 e _(A) and A0 = 0, then the zero vector is an equili-

brium solution, called the null solution, of (V-l) which is stable or

asymptotically stable according to (i) or (ii), respectively.

Proof. By hypothesis and applying theorem V-7, A is the infinite-

simal generator of a nonlinear contraction semi-group on V(A) in an

equivalent space H I = (H, (.,.)I) under the condition (i) and i s the

infinitesimal generator of a nonlinear negative contraction semi-group

on P(A) in H I under the condition (ii), where the norm [I'II I induced

by (''')i satisfies

611xll : Ilxlll : _llxll for some 0 < 6 _ 7 < = •

By lemma V-10, A is the infinitesimal generator of a nonlinear semi-group

{Tt; t $ 0} on D(A) in H such that under the condition (i)

6-1
IIIIiirtx_TtYll _ y llx_yll x,y E _(A)

and under the condition (ll)

IIrtx-TtYll _ y 6-1 e-_t llx-yll x,y e V(A) (t _ 0).

Since for any x E V(A), Ttx is the unique solution in H I with ToX=X ,

it follows from the corollary of lemma V-10 that Ttx is also the unlaue

solution in H with T x=x. By the semi-group property of {Tt; t > 0} in
O •

H, we have under the conditions (i) or (ll)

I ITtx-Xell =<¥ _-l I IX-Xel I

or

IITtx-XeI I 6-1e- t I Ix-xe I I

(t > 0)

(t > 0),
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which shows that tile equilibrium solution Xe, if it exists, is stable

and asymptotically stable, respectively. Note that TtXe=Xe for all

t __>0. Since by lemma V-3, the contraction semi-group { Tt; t > 0} on D(A)

in the space }]i can be extended to _ in the II" I l1-topology, the

same is true for the semi-group {Tt; t > 0} on I_(A) in the space H

because the closure of _(A) in the [I"[ [l-tOpology is the closure of

_(A) in the II" [[-topol°gy by the equivalence relation of these two

norms. Hence the results of (a), (b) and (c) are proved. Tile stability

property of the null solution follows from (b).

The purpose for tile construction of a Lyapunov functional can

be demonstrated as follows: Let v(x) = V(x,x) be a Lyapunov functional

such that for some_ > 0

_(x(t)-y(t)) _< - e l lx(t)-y(t)II 2 (t >_ 0) (V-23)

for any two solutions x(t), y(t) of (V-l), where V(x,y) is a defining

sesquilinear functional. By lemma V-8, the functional

(x,y) I V(x,y) x, y _ 1t

defines an equivalent inner product of (.,.). Since

v(x) = V(x,x) = (x,x) I < 7llxl 12 for all x e H,

it follows from (V-23) that

_(x(t)-y(t)) < - a /y v(x(t)-y(t))=-2Xv(x(t)-y(t)) (2X - _ /y).

Integrating the above inequality with respect to t, we have

-2%t
v(x(t)-y(t)) _< v(x(0)-y(0))e (t __>0)

which is equivalent to

I lx(t)-v(t) 1121 < I Ix(0)-y(O) 112I
-2%t
e (t > 0)

2 (for all x e H). By the eouivalencesincev(x)= (x,x)1 llxlll

relation of II.II and II.111, there exists constants 6, y with O<6<y<_
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such that (V-12) holds. Thus the above inequality implies that

IIx(t)-y(t)ll2 _ 1/62 ]Ix(t)-y(t)ll21 _ e-2%t/6211x(0)-y(0)ll12

(y/6)2e-2%t Ilx(0)-y(0)ll 2

which is the same as

llx(t)-y(t)ll _ T/6 e-%t llx(0)-y(0)I I for t $ 0.

Hence, if an equilibrium solution x e (or any unperturbed solution) exists,

then by choosing y(0) = x e in the above inequality, we have

llx(t)-Xel I _ y/6 e-%tIIx(0)-Xel I for all t _ 0

which shows that the equilibrium solution x e is exponentially asymptot-

ically stable if a > 0, and is stable if a = 0.

The importance of theorems V-5, V-7, V-8 and V-9 is the fact

that the existence of a Lyapunov functional satisfying (V-16) or (V-20)

alone does not guarantee the existence of a solution to (V-l) and in

general, it is rather complicated to prove such solutions exist. However

under the additional assumption that R(I-A) = H the existence of a

solution with any initial element x e _(A) is assured. This assurance

makes the stability of solutions of (V-I) meaningful.

C. Stability Theory of Semi-linear Stationary Equations

In this section, we consider the operational differential equa-

tions of the semi-linear form

dx

d--_= AoX + f(x) x e Q(Ao) (V-24)

where A ° is a linear operator with domain _(Ao) and range R(A o) both

contained in a real Hilbert space H, and f is a given function (in

general, nonlinear in x) defined on H to H. By considering the operator

A ° + f(.) as the nonlinear operator A in the previous sections, (V-24)
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becomes a special case of (V-l) and hence all the results developed

in the previous sections are applicable to this case. In particular,

if A is the infinitesimal generator of a linear contraction semi-
o

group of class Co, it is natural to ask that under what conditions

on f the operator A ° + f(.) is the infinitesimal _enerator of a non-

linear contraction semi-group, or equivalently under what conditions

on f a solution of (V-24) exists and is stable (or asymptotically

stable). One simple answer to this question is that (f(x)-f(y), x-y)_0

and E(l-Ao-f(.)) = H since under these assumptions A=A ° + f(') is

dissipative and the result follows by applyin_ theorem V-2. However

the requirement R(l-Ao-f(.)) = H by itself is not easy to verify since

it is equivalent to the functional equation

x - A x - f(x) = z
o

having a solution for every z e H. In order to eliminate this assump-

tion and to refine some assumptions on the operator Ao, we shall make

use of some results due to Browder [i], [2] for the case of a Hilbert

space. The results obtained in this section include:

(a) The existence and the uniqueness of a solution of (V-24).

(b) The stability or asymptotic stability of an e_uilibrium

solution as well as the stability region with respect to the e_uilibrium

solution.

In order to show the following results, it is convenient to state

a theorem due to Browder [2].

Theorem V-IO (Browder). Let X be an uniformly convex Banach

space with its conjugate space X* also uniformly convex, and let T and

T be two accretive mappings with domain and range in X. Suppose that
o

(i) The range of T+I is all of X. P(T) is dense in X.
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(ii) To is defined and demicontinuous (i.e. continuous from

X in the strong topology to the weak topology of X) on all of X and maps

boundedsubsets of X into boundedsubsets of X.

ThemappingT+T° defined with domainD(T) satisfies the
(iii)

condition that

II+__,+ __II .+ I! II

I l_X_+oX)l + + +, as l lXll + + _ (x _ D(T)).

Than, the range of (T+To) is all of X, i.e., for each z in X, there

exists an element x in D(T) such that

Tx + T x = z.
o

It is to be noted that in the case of a Hilbert space X, both

X and X* are uniformly convex since X* is also a Hilbert space. More-

over) the definition of accretive operator coincides with monotone

operator when X is a }filbert space. Now we show the following:

Theorem V-II. Let A ° be the infinitesimal _enerator of a

(linear) contraction semi-group of class C . Assume that f satisfies
O

the following conditions:

(i) f is defined on all of H into H such that it is continuous

from H in the strong topology to the weak topology, and is bounded on

every bounded subset of H.

(ii) (f(x) - f(y), x-y) _ 0 for all x, y e H.

Then,

(a) For any x e D(Ao) , there exists a uniaue solution of (V-24)

(in the sense of theorem V-I) with T x = x such that T x is strongly
o t

continuous and is weakly differentiable with respect to t.

(b) Any equilibrium solution x e (or any unperturbed solution),

if it exists, is stable.
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(c) A stability region with respect to the equilibrium solu-

tion x e (or any unperturbed solution) is D(Ao) which can be extended

to the whole space H in the sense of lemma V-3.

Proo____f. Let A=A ° + f(.) with D(A) = D(Ao). Since an infinitesi-

mal generator of a contraction semi-group of class C o is densely defined,

dissipative and R(I-Ao) = H (see theorems 111-12 and 111-14), it follows

by the dissipativity of A and by the assumption (ii) that
o

(Ax-Ay,x-y) = (AoX-AoY , x-y) + (f(x)-f(y), x-y) _ 0 for all x,y e D(A)

which shows that A is dissipative. To show that R(I-A) = H, we apply

o

-A ° + I is all of II with V(-Ao) = ?(Ao) dense in H. Thus the operator

T = -A is accretive (or monotone) and satisfies the condition (i) of
o

theorem V-lO. To show the conditions (ii) and (iii) of theorem V-10,

let T = l-f(.). Then from assumption (i) T is defined on all of H
o o

and is continuous from H in the strong topology to the weak topology

and maps bounded subsets of H into bounded subsets of H which shows (ii)

of theorem V-10. T is monotone, for
o

(ToX-ToY , x-y) (x-y, x-y) (f(x)-f(y), x-y) _ I lx-yl 12= - x,y e H

where we have used assumption (ii). Moreover, by letting y=0 in (ii)

gives

(f(x), x) < (f(0), x) < l[f(0) ll I lxlT for all x e H. (V-25)

It follows by tlle dissipativity of A and by (V-25) that
o

J[-AoX+ToXll > (-AoX+ToX,X)/[ Ixll > (ToX,X)/l I_IJ=((x,x)-(f(x),x))/l Ixll

Ilxll- IIf(o)[I for all x e P(A o) (x # O) •

Thus llTx+ToXll+ + as I1 11 thatis, condition (iii) of theorem

V-10 is satisfied. Hence by applying that theorem we have R(I-A) = R(T+To)--}{.
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This later condition and the dissipativity of A imply that A is the

infinitesimal _enerator of a nonlinear contraction seml-grouD

{Tt; t _ 0} on Q(A o) by applying theorem V-2. Therefore, for any

x £ _(Ao) , Ttx e V(A) and i s the unique solution of (V-24) with

ToX=X and such that Ttx is strongly continuous and weakly once

dlfferentlable with respect to t. Since

l lTtx-TtYll _ llx-yll for all t _ 0 x,y e D(Ao)

it follows that by taking y as tile equilibrium solution Xe, if it

exists, then it is stable. Note that Ttx e = x e. The above inequal-

ity holds for any x, y e _(Ao) which implies that a stability re_ion

is _(Ao) , and by lemma V-3 this region can be extended to the whole

space H since V(Ao) is dense in H. Therefore, the theorem is proved.

Tile above theorem can be extended to the asymptotic stability

of an unperturbed solution. This can be achieved by makin_ use of

theorem V-3.

Theorem V-12. Let A be the infinitesimal generator of a
o

(linear) negative contraction semi-group of class C with contractive
o

constant 8. Assume that f satisfies the followin_ conditions:

(i) f is defined on all of }I into H such that it is contin-

uous from H in the strong topology to the weak topology and is bounded

on every bounded subset of H,

(ii) (f(x) - f(y), x,y) _ k I Ix-yl 12 with k < 8 for all x,y e II.

Then,

(a) For any x e _(Ao) , there exists a unique solution Ttx to

(V-24) with ToX=X such that Ttx is strongly continuous and is weakly

differentiable with respect to t.
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(b) Any equilibrium solution (or any unperturbed solution), if

it exists, is asymptotically stable.

(c) A stability region with respect to anv unperturbed solution,

including an equilibrium solution, is _(Ao) which can be extended to the

whole space H in the sense of lemma V-3.

= + f(.). Since A is the infinitesimal _enera-Proof. Let A A ° o

tor of a negative contraction semi-group, it is densely defined, dissipa-

tive and _(I-Ao) = H. Applying theorem V-3 for the linear case, A iso

strictly dissipative with dissipative constant B, that is

(AoX,X) _ -SIixll 2 for all x c _(Ao).

Thus the operator A is strictly dissipative with dissipative constant

S-k for

(Ax-Ay, x-y) = (AoX-AoY , x-y)+ (f(x)-f(y), x-y) _-(B-k) I Ix-yl 12

for all x,y e _(A). To show that _(I-A) = H, we prove _(I-=A) = H for

some _ > 0, since the monotonicity of -A implies that (l-cA) -I exists for

every e > 0, and by applying lemma V-I if R(I-eA) = H for some _ > 0

then R(I-A) = II. The reason for doing this is that if the same argument

as in the proof of theorem V-If is used it will lead to the unnecessary

requirement k < i. Let I-_A=-aA +(l-ef(.))=T+T where T = -cA and
= o o o

is monotone and is densely defined so is T=-_A ,To=l-_f('). Since -A ° o

and since A ° is the infinitesimal generator of a semi-group, _ E p(A o)

(the resolvent set of A ) for all e > 0 (theorem III-12) which implies
o

that R(I+T) = _(l-_Ao) = H. Thus the condition (i) of theorem V-lO is

satisfied. The mapping T =I-_f(.) is monotone for _ < k -I since by
o =

the assumption (ii)

(ToX-ToY,X-y) = (x-y,x-y) - _(f(x)-f(y),x-y) $ (l-=k) llx-yll 2 $ 0.
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It is obvious by the assumption (i) that T O is continuous on H and

is bounded on every bounded subset of H, which shows that T o satis-

fies the condition (ii) of theorem V-10. Finally, the relation

l lTX+ToXll ÷ _ as I lxll 4 _ is also satisfied. This is due to the

fact that the dissipativity of aA o and the relation (V-25) imply that

llrx+roXll = l]-aAoX+ToXll _ (-aAoX+ToX,X) /llxll _ (ToX,X)/IIxlI=

(llxll2- llf(o)ll Ilxll)/llxll=llxll-=llf(o)lt

where a > 0 is a fixed number. Hence by choosing a _ k -1, all the

hypotheses in theorem V-10 are satisfied and the result R(I-aA)=R(T+To)=H

follows. It should be noted that k > 0 so that 0 < a < k -I exists.

(if k < 0, then T is monotone by taking, for instance, a =i and the
= o

other conditions remain unchanged). By theorem V-3, A is the infinitesimal

generator of a nonlinear negative contraction semi-group {Tt; t _ 0} on

P(A o) with the contractive constant 8-k. Therefore the results listed in

(a), (b) and (c) follow directly from the negative contraction property

of the semi-group {Tt; t _ 0} and by lemma V-3 for the extension of the

stability region.

Remark. If A is the infinitesimal _enerator of a contraction
o

semi-group instead of a negative contraction semi-group,any unperturbed sol-

ution is still asymptotically stable provided that the constant k appearing in

the condition (ii) is negative, since in this case, we may take B=0 and

the operator A=Ao+f(.) remains strictly dissipative with dissipative

constant -k. The proof of R(I-A) = II remains the same.

Corollary i. Under the hypothesis of theorem V-ll (theorem V-12)

and in addition, if f(0)=0, then the null solution is stable (asymptoti-

cally stable) with the stability region the whole space If.
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Proof. If f(0) = 0 then x(t) 5 0 is an equilibrium solution

(called the null solution) of (V-24). Hence by theorem V-II (theorem

V-12), the null solution is stable (asymptotically stable) with the

stability region extended to the whole space H.

Corollary 2. Let A ° be the infinitesimal generator of a (linear)

negative contraction seml-group of class C O with contractive constant 8,

and let f be Lipschitz continuous on H with I,ipschitz constant k < 8,

that is

!!f(x)-f(y)! ! _ k! !x-y!! for all x,y e H.

Then for any x e D(A ) there exists a unique solution T x to (V-24)
o t

with T x=x such that any =qui±±ur_um....... _o±utlon-_ ' x to (V-24) is asymptot-
O e

ically stable. In particular, if f(O)=0 the null solution is asymptoti-

cally stable. Moreover, a stability region is V(Ao) which can be

extended to the whole space H.

Proof. By the Lipschitz continuity of f on II, it follows that

condition (i) in theorem V-12 is satisfied. This is due to the fact that

strong continuity implies weak continuity, and by (V-26) with x a fixed
O

element in H

IIf(x)II _ Ilf(Xo)II+k IIX-Xol I _ llf(Xo)II +k llxll +k IIXol I

which is bounded whenever llxll is bounded. Moreover, by (V-26)

(f(x)-f(y),x-y) _ llf(x)-f(y)l I IIx-yll _ kIIx-yll 2

and so condition (ii) in theorem V-12 is satisfied. }fence, by theorem

V-12 the existence and the uniqueness of a solution as well as the

stability property of an equilibrium solution are proved. In particular,

if f(0) = 0 then corollary I implies that the null solution is asymptoti-

cally stable.

kv--_J
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Theorem V-13. Let the linear operator A appearing in (V-24)
o

be such that 0 e D(A o) and that for some finite number 8 (i.e., I_I<=) ,

(AoX,X) =< B(x,x) for all x e V(Ao).

Let f be defined on V(A o) to H such that f(0)=0 and such that for some

finite number k (i.e., Ikl < =)

(f(x),x) _ k I Ixl 12 for all x e D(Ao).

If _ > k then the null solution of (V-24) is the only equilibrium solution.

Proof. It is obvious that the zero vector is an equilibrium

solution of (V-24). Let x be any other equilibrium solution, then
e

(Ao) +f(Xe) = O.x e £ and by the statement following definition V-5, AoX e

It follows that

0 = (AoX e + f(Xe),X e) = (AoXe,X e) + (f(Xe),X e) _ -(8-k) IIXell 2

which implies that Xe=0 since by hypothesis 8-k > 0. Uence the unique-

ness of the equilibrium solution is proved.

Corollar_f. Under the conditions of theorem V-12 and in addition

if f(O) = 0, then the null solution is the only equilibrium solution.

Proof. Since A is the infinitesimal generator of a negative
o

contraction semi-group with contractive constant B, it is strictly dissi-

pative with dissipative constant 8 and 0 e D(Ao). By the assumption (ii)

of theorem V-12 we have, by letting y=0 in the condition (ii)

(f(x),x) _ k llxll 2 with k < B, x E H

since f(0) = 0. Hence the uniqueness of the equilibrium solution follows

from the theorem.

Most of the theorems developed in this section up to now assumed

that the linear part A ° of (V-24) is the infinitesimal generator of a

contraction semi-group of class C o. A necessary and sufficient condition
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for Ao having this property is that Ao is dissipative, _(-_o) = H and

R(I-A o) = H (see theorem 111-14). Again the reauirement _(I-A ) = H
O

means the existence of a solution of the functional equation

x-Ax= z
O

for every z _ H which by itself needs further justification. However

in case A ° is a self-adjolnt operator which occurs often in physical

applications, this requirement can be eliminated in these theorems.

In order to show this, we first state a theorem from [i] by Browder and

then we consider a densely defined closed operator and take a self-

_4^_._ operator as a special case.

Theorem V-14 (Browder). Let X be a reflexive Banach space, T

a mapping from the dense linear subset V(T) of X into X*. Suppose that

T=L+G where L is a densely defined closed linear operator from X to X*,

G a hemi-continuous mapping from X to X* with Q(G) = X and G taking

bounded subsets of X into bounded subsets of X*. Suppose that:

(i) There exists a completely continuous mapping C from

X to X* such that T+C is monotone ;

(li) L* is the closure of its restriction to _(L)_ D(L*_

(ill) There exists a real-valued function c(r) on R 1 with

c(r) ÷ _ as r + _ such that

(Tx,x) _ c (IlxII) I Ixll for all x e V(T).

Then R(T), the range of T, is all of X*.

Remarks. (a) G is said to be hemi-continuous if G is con-

tinuous from every line segment in P(G) to the weak* topology of X*.

(b) A Hilbert space is reflexive.

Theorem V-15. Let A ° be a densely defined closed operator from

H into H. Suppose that:
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that is

(i) A ° is strictly dissipative with dissipative constant B,

(AoX,X) < -B] Ixl]2 for all x e _(Ao) ;

(ii) A*o is the closure of its restriction to P(Ao) _ _(A_)

where A* is the adjoint operator of A ;
O O

tinuous from the strong topology to the weak topology and is bounded

on every bounded subset of H;

(iv) (f(x)-f(y),x-y) _ k]Ix-yl] 2

Then

with k < B for all x,y e H .

(a) For any x E P(Ao) there exists a unique strongly contin-

uous solution Ttx to (V-24) with ToX=X;

(b) An equilibrium solution Xe, if it exists, is asymptotically

stable. In particular, if f(0)=O the null solution exists and is

asymptotically stable;

(c) The stability region can be extended to the whole space in

tile sense of lemma V-3.

Proof. Let A=A + f(.), then A is strictly dissipative, since by
O

hypothesis

(Ax-Ay,x-y) = (AoX-AoY,X-y)+ (f(x)-f(y),x-y) _-(B-k) IIx-yl 12

for all x,y e V(Ao) = D(A). To show that R(I-A) = H, let T=I-A=-Ao+(I-f(.)) ,

is densely defined, A*then _(T)=D(Ao) is densely defined. Since -A ° o

exists and is closed, and by the assumption (ii) -A* is the closure of
O

its restriction to _(-Ao) _ D(-A_). By (iii) the operator G=l-f(.) is

continuous from all of II to H in the strong topology to the weak topology

which implies its hemi-continuity from II to H with D(G)=H. The bounded-

ness of G on bounded subsets of H also follows from (iii). Moreover
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(Tx-Ty,x-y) (x-y,x-y) (Ax-Ay,x-y) _ (l+B-k) llx-y I 12= - x,y E _(T)

so that T is monotone. In particular by letting y=0 (0 E D(Ao)=_(T))

in the above inequality and since T.0 = 0-A.0 = -f(0), it follows

that

(Tx,x) _ (l+_-k) llxll2-(f(0),x) _ ((l+B-k) llxIl-llf(O)II)llxlI,

for all x _ V(T)

and since _ - k > 0 the real valued function c( I Ixl I) defined by

c(IIxll ) = (l+_-k)llxlI-Ilf(o)I I

has the property that c(!!x!!) + _ as !!x!! _ _. Hence all the

conditions in theorem V-14 are satisfied if we take, for instance, the

co_@letely continuous mapping C=0 (the zero operator which maps all

x g H into the 0 vector in H). Therefore R(I-A) = R(T) = II. By

applying theorem V-3, A is the infinitesimal generator of a non-llnear

negative contraction semi-group on P(A) = P(A ) with the contractive
o

constant B-k. Thus, the stated results in the theorem follow directly

from the negative contraction semi-group property as in the proof of

theorem V-If.

Remarks. (a) The above theorem can also be proved with B=k=O,

in which case the equilibrium solution is stable with a stability region

P(Ao). The proof is exactly the same by letting _=k=O and by applying

theorem V-2. (b) If A is dissipative (i.e. B=0 in (1)) and k < 0 in
o

(iv), then the theorem is still valid. In this case, Ao+f(.) is the

infinitesimal generator of a nonlinear negative contraction semi-group

with the contractive constant -k.

Since an unbounded self-adjoint operator A ° is a densely defined

=A*
closed operator having the property that _(A o) = _(Ag) (in fact A ° o '
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see definition III-3) we have, with a stronger assumption on the func-

tion f, the following result which is stated as a theorem because of

its usefulness in applications.

Theorem V-16. Let A be an unbounded self-adjolnt operator
o

from 11 to H and assume that it is strictly dissipative with dissipative

constant B, that is

(AoX,X) _ -8(x,x) for all x e _(Ao).

Let f be Lipschitz continuous on H with Lipschitz constant k < 8,

that is

IIf(x)-f(y)ll _ k lIx-Yll for all x,y e H.

Then for any x e P(Ao) there exists a unique strongly continuous solution

Ttx to (V-24) with ToX=X. Moreover any equilibrium solution x e of (V-24),

if it exists, is asymptotically stable with D(A o) a stability re_ion, and

this region can be extended to the whole space H. In particular, if

f(0) = 0 then the null solution is asymptotically stable.

implies that A is a denselyProof. The self-adJoint_ess of A ° o

defined closed operator and D(A_) = P(Ao). By the Lipschitz continuity

of f, f is continuous in the strong topology and. is bounded on every

bounded subset of H. This assumption (Lipschitz continuity) also implies

that

(f(x)-f(y),x-y) _ l lf(x)-f(y)ll [Ix-y]] _ kl [x-Yl 12 for all x,y e H.

Hence, all the conditions in theorem V-15 are satisfied, and the result

follows by applying that theorem.

Remark. The Lipschitz continuity of f in the theorem can be weak-

ened by using the conditions (iii) and (iv) in theorem V-15.

In section B, it has been shown that stability and asymptotic

stability are invariant if the inner product (.,.) is replaced by an
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equivalent inner product (''')i with respect to which A is dissipative.

In the special case of A=A +f(.), where A and f(.) are defined as in
o o

(V-24), theorem V-II (also theorem V-12) remains valid if A is the
o

infinitesimal generator of a contraction (negative contraction) semi-

group of class C o in the Hilbert space (11,(.,.)1) and the inner product

(.,.) in condition (li) is replaced by ('")I (in theorem V-12, (.,.)

and ll'II in (ii) should be replaced by ('")i and II.II I respectively).

Because of its usefulness in applications (for instance, a non-self-

adjoint operator in a Hilbert space (H,(.,.)) can sometimes be made

se!f-adjoint in (H_.,._ _ wB_= ( _ ....... _.,_I=._ _....... _...."I .......... "')i ....................... L....... ,

we show one theorem, which is an extension of theorem V-16, as an

±_±u_ Lr_t ion.

Theorem V-17. Let A ° be a densely defined linear operator from

H=(H,(.,.)) into H, and let f be defined from all of ]l into H such that

it is continuous from the strong topology to the weak topology of 11 and

is bounded on every bounded subset of H. If there exists an equivalent

inner product (''')i such that A ° is a self-adjoint operator in H I =

(H,(.,.)I) satisfying

(AoX,X) I < -_llxll_ x a _(Ao)

and if

2 with k < 8, x,y E H.(f(x)-f(Y),x-Y) I _ kl Ix-yll I

Then, all the results stated in theorem V-15 are valid.

Proof. Consider Ao as an operator from the space H I = (H,(.,.)I)

into H I . Since A ° is self-adjoint in the space HI, it is a densely defined

closed operator and R(Ao) = Q(A_). The continuity and the boundedness

of f with respect to the ll.ll-norm topology implies the same property

of f with respect to the If. Ill-norm topology since these two norms are
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equivalent. By assumption, A is strictly dissipative and the condition
O

(iv) in theorem V-15 is satisfied with respect to (''')i" Hence all

the hypothesis in theorem V-15 are satisfied by considering H I as the

underlying space which implies that the operator A=Ao+f(.) is the

infinitesimal generator of a nonlinear negative contraction semi-group

{Tt; t _ O} on V(A o) with contractive constant 8-k in the space H I. By

lemma V-IO, A is the infinitesimal generator of a nonlinear negative

semi-_roup {Tt; t _ 0} on D(A o) in the original space H. Therefore

all the results in theorem V-15 hold good in this case (The proof is the

same as in the proof of theorem V-9).
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VI. STABILITY THEORY OF NONLINEAR TIME-VARYING

DIFFERENTIAL EQUATIONS IN HILBERT SPACES

A large class of physical problems are described by a system

of nonlinear partial differential equations which can be reduced to the

form (V-I) but with either time-dependent coefficients of the partial

differential operator or time-dependent boundary conditions. In a

more general case both the coefficients of the differential operator

and the boundary conditions are time-varying. In order to investigate

this type of differential equation in the abstract setting, it is

necessary to extend the operator A in the previous chapter to a more

general type of operator A(t) which depends on the variable t. The

object in this chapter is to extend the principle result in Chapter V

for the case of nonlinear time-varying operational differential equations

of the form

dx(t_____)= A(t)x(t) (t > 0) (VI-I)
dt =

where the unknown vector x(t) is a vector-valued function defined on

R+ = [0, _) to a Hilbert space H and A(t) is, for each t _ 0, a given

nonlinear operator with domain _(A(t)) and range R(A(t)) both contained

in H. In the first section, we give a formal definition of a solution

and state the main results from [ii]. In section B, we present some

results on the general operational differential equations of the form

(VI-I), and in section C we consider, as a special case of (VI-I),

operational differential equations of the form

dx(t_____)= Ax(t) + f(t,x(t)) (t > O) (Vl-2)
dt =

where A is a nonlinear operator as in Chapter V and f is a given function

from R+ x II into 1!. It is seen that equation (Vl-2) is a direct exten-
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sion of equation (V-l). In section D, we first discuss briefly another

special case of (VI-l),the equations of the form

dx(t) = A (t)x(t) + f(t,x(t)) (t > 0) (VI-3)
dt o =

where Ao(t) is, for each t > 0, a linear operator with domain D(Ao(t))

and range R(Ao(t)) both contained in a Hilbert space 1{ and f is a

J C.._ _ _-." 4=_- _. D _"....... v H _en T4 Th= nh_nt of this section is to
_J.V_LL ZU, L_.I'..'I...LVL A _vL** _. _ ......... . --- ..... .j ---

deduce a number of theorems from tile results obtained in section C on

a special form of (VI-3) where A (t) = A which is independent of t.
O O

We discuss in more detail this type of equation which is a direct exten-

sion of equation (V-24) with f(t,x(t)) = f(x(t)). Finally, a few results

on the ordinary differential equations of the form

dx(t) = f(t,x(t)) (t > 0) (VI-4)
dt =

with the same f as in (VI-3) are included in this section since it is

a special form of (VI-3) with Ao(t) - 0.

A. Background

As in the case of Chapter V, the stability theory developed in

this chapter is again based on the recent paper by Kato [Ii] in which

the existence and uniqueness of a solution to (VI-I) are established.

In order to state the results in [ii], we give a formal definition of a

solution of (VI-I) and according to some additional properties of the

solutions, different terminology is used as given in the following:

Definition VI-I. By a solution x(t) of (VI-I) with initial condi-

tion x(0) = X e _(A(0)) in a Hilbert space H (real or complex), we mean

the following:

(a) x(t) is uniformly Lipschitz continuous in t for each t _ 0

with x(0) = x.
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(b) x(t) e D(A(t)) for each t _ 0 and A(t)x(t) is weakly

continuous in t.

(c) The weak derivative of x(t) exists for all t _ 0 and

equals A(t)x(t).

(d) The strong derivative of dx(t)/dt = A(t)x(t) exists and

is strongly continuous except at a countable number of values t.

(e) For any x(t), y(t) satisfyin_ (a)-(c) with x(0) = x,

y(0) = y both in _(A(0)), there exists a positive constant M such that

llx(t)-y(t)l I _ Mllx-yll for all t _ 0.

The above definition of a solution x(t) is in the sense of a "weak

solution" since x(t) satisfies (VI-I) in the weak topology of H. flow-

ever, by the condition (d), x(t) is an almost everywhere strong solution

in the sense that x(t) satisfies (VI-I) for almost all values of t c R+

in the strong topology of H.

Definition VI-2. Let x(t) be a solution of (VI-I) with x(O)=x

(in the sense of definition VI-I). If M _ i, where M is the positive

constant appearing in (e), then x(t) is called a contraction solution;

if M is replaced by Me -St or by e-Bt for some _ > O, then x(t) is called

a negative solution and a negative contraction solution respectively.

It follows from the condition (e) that the solution x(t) of (VI-I)

with x(0) = x E _(A(0)) is unique, and if y(t) _ x is an equilibrium solu-
e

tion of (VI-I) then the condition (e) implies that x e is stable.

On setting x(t) = Ttx for any x e D(A(0)) where x(t) is the contrac-

tion solution of (Vl-1) with x(0) = x, it can easily be shown that the

family {Tt; t _ 0} forms a nonlinear contraction seml-group on _(A(0)).

However, in this chapter, we do not follow the semi-group property as in

Chapter V, but rather use directly the properties (a)-(e) of a solution

III



given in definition VI-I. Yet, if we set x(t) = Ttx , then by lemmaV-3

{Tt; t > 0} can be extended to the closure of D(A(O)) which implies that

the existence of a contraction solution can be extended for any initial

elementx c _(A(0)). Hencewe can state the following:

Lemma VI-I. If for any x a _(A(0)) there exists a contraction

(negative contraction) solution x(t) of (VI-I) with x(0) = x, then for

any x E _(A(0)), we can define a "solution" x(t) of (VI-I) with x(0) = x

by

lim
x(t) = x (t)

n -_= n

Xn(0 + x as n _ _. The "solution"where ) = x n _ V(A(0)) for each n and x n

x(t) is also a contraction solution (negative contraction solution).

It has been shown in the proof of lemma V-3 that the limit defined

above exists and is independent of the choice of any sequence {x } (in
n

D(A(0))) which converges to x. Moreover, x(t) e _(A(0)) for all t > 0

and the condition (e) in definition VI-I with M=I (with M replaced by

-St
e for a negative contraction solution), is satisfied for any "solution"

y(t) with y(0) = y E _A(0)),

For convenience, we introduce the following basic assumptions on

the operator A(t) and refer to them thereafter as the condition I or the

conditions I, II etc. to mean that A(t) satisfies the respective assumptions.

I. Tile domain P of A(t) is independent of t.

II. For each t > 0, there is a real number _ (t) > 0 such that

R(I - _ (t)A(t)) = H.

III. There exists a positive, nondecreaslng function L(r) of r > 0

such that for all x E P and any s,t > 0

I IA(t)x-A(s)xl I =< e([ Ix[ [) [t-s I (i + I IA(s)xl [)
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where the norm II'I[ is induced by the inner product (.,.) of the Hilbert

space ll=(H, (.,.)).

In the developmentof the stability and the asymptotic stability

properties of tile solutions to (VI-I), we haveused someof the results

obtained in [ii]. Becauseof their importance in the developmentof our

stability theory, we state the main results from [Ii] as the followin_

theoremwhere we take a Hilbert space as the underlyin_ space.

Theorem VI-I. Let the nonlinear operator A(t) appearinK in (VI-I)

satisfies the conditions I, II, III. Assume that for each t _ 0, A(t)

is dissipative (i.e. -A(t) is monotone). Then for any x e ?, there exists

a unique contraction solution x(t) (in the sense of definition VI-I) with

x(O) = x.

It follows from definition V-4 that for each t _ O, the dlssipatlvity

of A(t) and the condition II imply that -A(t) is m-monotone which is one of

tile hypotheses in the main theorems of [ii]. It is to be noted that if the

initial time is not at t=O but at t=t > 0, then the result of the above
o

theorem remains valid in the sense that for any x _ _(A(to)) = _ there

exists a unique contraction solution startin_ at x(t o) = x. Here defini-

tions VI-I and Vl-2 of a contraction solution should be modified by re-

placing 0 by t whenever it appears; and in the case of a negative solution
o

or a negative contraction solution, Me -St -Btor e should be replaced by

Me -_(t-to) and e-_(t-to) respectively.

B. Stability Theory of General Nonlinear Equations

The contraction property of the solution of (VI-I) obtained in

theorem VI-I implies that any equilibrium solution Xe, if it exists, is

stable. However, in many physical and engineering problems, it is important
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to know the asymptotic behavior of solutions of the differential equa-

tions describing these systems. In order to extend theorem VI-I to show

the asymptotic stability of solutions t o (VI-I), we first show the

following:

Lemma VI-2. For any pair of strongly continuous and weakly

differentiable functions x(t), y(t) which satisfy (VI-I) in the weak

sense, then the real-valued function I lx(t)-y(t)l 12 is differentiable

in t for each t > 0 and is given by

_t ]Ix(t)-y(t)[I 2 = 2Re(A(t)x(t)-A(t)y(t), x(t)-y(t)) (VI-5)

where d/dt IIx(t)-y(t)ll 2 at t=0 is defined as the right-side derivative.

Proof. For any fixed t > 0, let h # 0 be such that lhl < t.

Then t+h > 0 so that x(t+h) and y(t+h) are defined. Following the same

proof as for lemma V-5, we have

h-l[llx(t+h)-y(t+h)ll 2- IIx(t)-y(t)ll2]=h-l[(x(t+h)-x(t),x(t+h)-y(t+h))

- (y (t+h)'y (t), x (t+h)-y (t+h))+ (x (t)-y (t), x (t+h)-x (t))- (x (t)-y(t),

y (t+h)-y (t)) ].

w
By hypothesis h -I (x(t+h)-x(t)) _ A(t)x(t) and x(t+h)-y(t+h) ÷ x(t)-y(t)

h_l (y (t+h)_y was h ÷ 0 (Similarly, (t)) + A(t)y(t)), we have on applying

lemma V-4 as h + 0

Tt I Ix(t)-Y(t) I 12=(A(tlx(t),x(t)-y(t)l-(A(tly(t),x(t)-y(tl) +

+(x(t)-y(t),A(t)x(t)) - (x(t)-y(t), A(t)y(t))=(A(t)x(t) -

-A(t)y(t) ,x(t)-y(t))+(x(t)-y(t), A(t)x(t)-A(t)y(t)) =

= 2Re(A(t)x(t)-A(t)y(t) ,x(t)-y(t))

which shows that I lx(t)-y(t)II 2 is differentiable and satisfies (Vl-5)

for t > 0. For t=0, (VI-5) is still valid by taking h > 0 and h + 0 in

place of h ÷ 0, where we define d/at I Ix(0)-y(0)II 2 as the right-side

derlvatlve.

114



Theorem VI-2. Assume that the nonlinear operator A(t) appearin_

in (Vl-1) satisfies the conditions I, II, III and that there exists a

positive real-valued continuous function 8(t) defined on R+ such that

for each t > 0, A(t) is strictly dissipative with dissipative constant

6(t), i.e.,

Re(A(t)x-A(t)y,x-y) < -B(t)(x-y,x-y) for all x,y _ V.

Then for any x e _, there exists a unique contraction solution x(t) of

(VI-I) with x(0)=x, and for any solution y(t) with y(0) = y e D

t

I lx(t)-y(t)l I < e-o_ 8(s>ds I [x-Yl I for all t __>0. (VI-6)

In particular, if 8(t) = 8 which is independent of t then x(t) is a

negative contraction solution.

Proof. For each fixed t > 0, the strict dissipativity of A(t)

implies the dissipativity of A(t) (see definition V-3) and thus

the existence and the uniqueness of the solution x(t) with x(0)=x e i)

follows from theorem VI-l. To show the inequality (VI-6), let y(t) be

any solution of (VI-I) with y(0)=y e _. Since by definition VI-i x(t)

and y(t) are strongly continuous, weakly differentiable and satisfy

(VI-I), it follows by lemma VI-2 and by the strict dissipativity of A(t)

that

Tt llx(tl-y(t) II2 =2Re(A(t)x(tl-A(t)y(t),x(tl-y(t)) <

< -2g(t) I Ix(t)-y(t) I ]2

for each t > 0. Note that the function l lx(t)-y(t)II 2 is a positive

real-valued function defined on R+ = [0_ _). WritinK the above inequal-

ity in the form

d(l Ix(t)-y(t)ll2)/(llx(t)-y(t)}l 2 < -2g(t)dt
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and integrating on both sides, we have

llx(t)_y(t)ll2< llx(O)_y(O)ll2 e-2_ t B(s)ds

which is equivalent to

-/tB(s)dsllx-yll for all t , 0.llx(t)-y(t)ll = e o =

In particular, if B(t) = B then

iix(t)-y(t)ii _ e-Btilx-yl[ for all t _ 0

and thus x(t) is a negative contraction solution, llence the theorem

is proved.

Lermma VI-3. Let Hl=(H,(.,.)l) be an equivalent }filbert space

of the space II=(}I,(.,.)). For any x e _, let x(t) be the solution of

(VI-I) with x(0)=x in the equivalent space II1 (i.e., the underlying space

in definition VI-I is HI). Then x(t) is also the solution of (VI-I) with

x(0)=x in the original space H.

Proof. The equivalence relation between (.,.) and (''')l implies

that there exist constants d, y with 0 < _ < y < _ such that

dIlxll _ Ilxll I _ y llxll for all x e H (VI-7)

1/2 By hypothesis x(t) satisfieswhere II'II = (.,.)i/2 and II.II1 = (''')i "

the conditions (a)-(e) of definition VI-I in the lll-space , we shall show

that the same is true for x(t) in the H-space. The conditions (a) and (d)

are obviously satisfied with x(t) in the H-space, for strong continuity in

the norm topology is invariant under equivalent norms. By the relation (VI-7),

the condition (e) is satisfied for some N > 0 since

Ilx(t)-y(t)(I = 6-ii Ix(t)-y(t)[ll _ 6-1HI [x-Y[ll _ y/_ M[[x-yl[ (VI-8)

where N = y/_ M. To show that the conditions (b) and (c) are satisfied

in H, define V(x,y) = (x,y). Then V(x,y) is a sesquilinear functional

defined on the product space H I x H I and satisfies the following conditions:
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(i) Sesquillnearity: V(_ix I + _2x2,Y) = _IV(Xl,Y)+_2V(x2,Y)

(Xl,x2,Y e HI)

V(x,BIy I + B2y 2) = _iV(x,Yl)+_2V(x,Y2 )

(x,Yl,y 2 e HI)

which follows from the definition of inner product defined on a complex

vector space.

(li)

(iii)

Boundedness: IV(x,y) l = I(x,y) l _ IIxII llyll = 6-211XlllllYlll

Positivity: V(x,x) = (x,x)=llxll 2 > _-211xll 2

Hence by the Lax-Miligram theorem (III-7), there exists a bounded linear

--1

operator S with a bounded inverse S --_ defined on all of H I such that

(x,y)=V(x,y)-(x,Sy) 1 for all x,y e H. (VI-9)

Thus for each fixed t > 0, the relation (VI-9) and the weak differentiability

of x(t) wi_h its derivative equals A(t)x(t) in H I imply that

h÷01imh-l(x(t+h)_x(t) ,z) = h+ollmh-l(x(t+h)_x(t),Sz) 1 =

=(A(t)x(t),Sz) 1 = (A(t)x(t),z) for every z e H (VI-10)

which shows that x(t) is weakly differentiable for t > 0 and e_uals

A(t)x(t). For t=0, we take h > 0 with h + 0 in place of h + 0 so that

(VI-lO) is valid by defining the weak derivative of x(O) as the right

side weak derivative. This proves condition (c) in the H-space. The

condition (b) in the space H follows from (VI-9) and the weak continuity

of A(t)x(t) in H 1 since for each t _ 0

lim +h + ._lim
h+0(A(t )x(t h),Z)-h+ 0 (A(t+h)x(t+h),SZ)l=(A(t)x(t),SZ)l=(A(t)x(t),z)

for every z e H

where for t=0 the limit in the above relation is taken as the right-slde

limit. Therefore, all the conditions of definition VI-I are satisfied in

the space H and thus the lemma is proved.
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It should be noted that if the solution x(t) of (VI-I) is

contractive in HI, it is not necessarily contractive in the space H

since the constant N = y/_ M in the relation (Vl-8) is, in general,

not less than i even though M_ i.

Theorem VI-3. Let (H,(.,.)) be a Hilbert space and assume

that the conditions I, II, III are satisfied in H. If there exists

an equivalent inner product (''')I with respect to W_I_ULL A_j _°

dissipative for each t _ 0, then for any x c D there exists a unique

solution x(t) of (Vl-l) in the space (H,(.,-)) with x(O)=x.

Proo____f. Consider A(t) as an operator with domain P and range

R(A(t)) both contained in the equivalent Hilbert space HI=(H,(.,.)I) ,

we shall show that conditions I, II, III are satisfied with H I as the

underlying space. The conditions I, II remain valid in H I. To show

that the condition III is satisfied with respect to [J.I[l, note that

L(llXll I) _ e(l[x2[ [) if [IXl[ I _ J[x2[ [ since e is nondecreasing. By

hypothesis the condition III holds with respect to II'II, we have on

using the relation (Vl-7)

IIA(t)x-A(s)xll I _ Yl [A(t)x-A(s)x[l_ YL(I Ixl I) °It-sl(l+IIA(s)xl [)

Y L(6-111xI[_ [t-s[(l+_-lllA(s)xl[_ Y X L(_-lllx[l_ It-sl(l+llA(s)xl[ I)

where X= max(l,_-l). Let LI( [ Ix[II)=YXL(_ -l]Ixlll), then Ll(r) as a

function of r > 0 is positive since L(r) is; it is also nondecreasing,

for given any pair of positive numbers rl,r 2 with r I < r 2 which is equi-

valent to 6-1r I < 6-ir2 , then L(6-1rl) _ L(6-1r2) which shows that El( jIxl Ii) ,

is non-decreasing. Hence on replacing L(IIxll ) by Ll(llXlll) , the condition

III is satisfied with respect to II.II I. By hypothesis A(t) is dissipative

with respect to (''')i' it follows by theorem VI-I that for any x e D

there exists a unique contraction solution x(t) in H I with x(0) = x. There-
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fore by lemmaVl-3, x(t) is also the solution of (Vl-l) in the space H with

x(0)=x (in general, x(t) is not contractive). Thus the theoremis proved.

Following the sameproof of the abovetheoremand applying

theoremVl-2, we can prove the following theoremfor the existence

of a negative solution.

TheoremVl-4. Let H=(H,(.,.)) be a Hilbert space and assume

that the conditions I, II, III are satisfied in H. If there exists

an equivalent inner product (''')i with respect to which A(t) is

strictly dissipative with dlsslaptlve constant 8(t) for each t > 0

where 8(t) is a positive continuous function defined on R+, then

for any x ¢ _ there exists a unique solution x(t) of (Vl-l) in H

with x(0) = x, and for any solution y(t) with y(0)=y ¢ Q there is a

finite number M > I such that

t

llx(t)-y(t)ll _ Me-_ 8(s)dsllx-yll for all t _ 0. (VI-II)

In particular, if 8(t) = 8 which is independent of t, x(t) is a nega-

tive solution.

Proo_____f.Since all the hypotheses of theorem VI-3 are fulfilled,

the existence of a unique solution follows. To show that the solution

is negative, let x(t),y(t) be any two solutions with x(O)=x, y(O)=y

both contained in _. From the proof of theorem Vl-3, A(t) satisfies

the conditions I, II, III in HI, and by hypothesis A(t) is strictly

dissipative with dissipative constant 8(t) with respect to ('")i" Hence

by applying theorem Vl-2

t

llx(t)-y(t)ll I _ e-! 8(s)dsllx-yll I (t _ 0).

It follows by the equivalence relation (VI-7) that

t

llx(t)-y(t)ll _ 6-1]Ix(t)-y(t)lll _ 6-1e-_ 8(s)ds I Ix_yll I

t t

(y/_)e-_ S(s)ds I Ix-yl l=Me-! _(s)dSl Ix-yll (t _ o)
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where M=y/5 _ i. If B(t) = _ which is independent of t, then

llx(t)-y(t)ll _ Me-BtlIx-yll for all t _ 0

which shows that the solution is negative. This completes the

proof.

An immediate consequence of the relation (VI-II) is that

inf

under the hypotheses of theorem VI-4, and i f t_O fl(t) > O, then

an equilibrium solution x (or a periodic solution) of (VI-I), if
e

t

it exists, is asymptotically stable since f g(s)ds _ _ as t + _ •
o

In particular, if B(t) = _ then the equilibrium solution xe is

exponentially asymptotically stable.

By an equilibrium solution x of (VI-I), we mean the same
e

thing as in definition V-5 except with the words "x in _(A)" replaced
e

by "x in _(A(t)) for all t > 0". It can easily be shown that (see
e =

the proof following definition V-5) the existence of an equilibrium

solution is equivalent to the existence of a solution to (VI-I)

satisfying

A(t)x(t) = 0 for all t > 0 • (VI-12)

Theorem VI-5. Assume that the conditions I, II, III are satisfied.

If there exists a Lyapunov functional v(x) = V(x,x) such that for each

t>O

ReV(A(t)x-A(t)y, x-y) < 0 for any x,y e (VI-13)

where V(x,y) is a defining sesquilinear functional defined on H x H. Then:

(a) For any x e Q , there exists a unique solution x(t) of (VI-I)

with x(0)=x;

(b) An equilibrium solution x
e

(or a periodic solution), if it

exists, is stable;
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(c) The stability region of x is _ which can be extended to
e

_, the closure of 1), in the sense of lemma VI-1.

If the relation (Vl-13) is replaced by

Re V(A(t)x-A(t)y,x-y) < -8(t) IIx-y 112 for any x,y e D (VI-I3)'

where B(t) is a positive continuous function on R+ with inf
t>O B(t) > 0,

then (b) can be replaced by:

(b)' An equilibrium solution x
e

it exists, is asymptotically stable.

(or a periodic solution), if

Proof. Since V(x,y) is a defining sesquilinear functional defined

on H x H, it follows by !emma V-8 that

(x,y) I = V(x,y) x, y e H

defines an inner product (''')i which is equivalent to (.,.).

assumption (VI-13), for each t $ 0

By the

Re (A(t)x-A(t)y,x-Y)l = ReV(A(t)x-A(t)y,x-y) _ 0 x,y e

which shows that A(t) is dissipative with respect to (''')i for each

t $ 0. Hence, by applying theorem VI-3, for any x e D there exists a

unique solution x(t) of (VI-I) in the original space H with x(O)=x.

By definition Vl-l, for any solution y(t) with y(0)=y e

I lx(t)-y(t)l I < M IIx-yll for all t > 0. (Vl-14)

It follows by taking y=x e (if it exists) in the above inequality and

noting that y(t) E x
e

llx(t)-Xel I _ MllX-Xel I for all t $ 0

which shows that the equilibrium solution x e is stable.

holds for any solution x(t) with x(0)=x e D, the stability region is thus

the whole domain O. The extension of _ into its closure D follows from

(Vl-14)'

Since (VI-14)

lermna VI-I. In case (VI-13) is replaced by (VI-13)', then

2
Re(A(t)x-A(t)y,x-y) I __<- _(t) I Ix-yll 2 __<-B(t)/y l lx-Ylll (x,y e V)
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and so for each t _ 0, A(t) is strictly dissipative with dissipative

constant B(t)/y with respect to (''')i" Thus by applyln_ theorem

VI-4, for any x e _ there exists a unique solution x(t) in the space

(H,(-,.)) with x(O)=x. If an equilibrium solution x e exists, then

by the relation (Vl-ll) t

I Ix(t)-xell Me- -l/oS(s)ds I IX-XelI for all t > O.

Therefore the equilibrium solution x e is asymptotically stable since
t

inf lira / B(s)ds = _
t>O g(t) > 0 implies t --_ .

= o

Corollary i. Assume that the conditions I, II, III are saris-

fled and that (VI-13) is valid. Then for any two solutions x(t) and y(t)

of (Vl-l) with x(O)=x, y(O)=y both in

_(x(t)-y(t)) =< 0 for all t > O.

If (VI-13)' is satisfied, then

_(x(t)-y(t)) =< -28(t) I Ix(t)-y(t)l 12 for all t > O.

Proof. It can easily be shown by followin_ the proof of lemma

V-7 that for any two solutions x(t),y(t)

_ (x (t)-y (t)) =2ReV (A (t)x (t)-A (t) y (t) ,x(t)-y (t)).

The results follow directly from (Vl-13) and (VlC13) ' since x(t),y(t) e

for all t > O.

A direct consequence of theorem Vl-5 is the following:

Corollary 2. Under the assumptions of theorem VI-5, and in

addition if 0 e _ and A(t).0=0. Then the null solution is stable under

the condition of (Vl-13) and is asymptotically stable under the condition

of (VI-13)'.
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C. Nonlinear Nonstationary Equations

Basedon the theoremsdeveloped in the previous section, we shall

develop someresults on the nonstationary differential eauations of the

form

= Ax(t) + f(t,x(t)) (VI-15)
dt

where A, which is independent of t, is a nonlinear operator with domain

D(A) and range R(A) both contained in a real Hilbert space H and f is

a given (nonlinear) function on R+ x H into H. On setting A(t)=A+f(t,.),

the equation of the form (VI-15) becomes a special case of the general

nonlinear equation (VI-I) and thus the results in section B can be applied

to this type of equation. On the other hand, equations of the form

(VI-15) are direct extensions of the nonlinear differential equations of

the form (V-l) where f can be regarded as identically equal to zero. The

purpose of this section is to modify the basic assumptions I, II, III of

section A so that the existence, the uniqueness, the stability and the

asymptotic stability of a solution can be investigated. For the sake of

convenience in the statements of our results in this and in the remaining

sections of this chapter, we state some basic assumptions on the function

f. These basic assumptions are:

(i) f is defined on R+ x H into I{ and for each t _ 0, f is

continuous from tlle strong topology to the weak topology of H and is

bounded on every bounded subset of H;

(ii)

(ii)'

For each t > 0,

(f(t,x)-f(t,y), x-y) _ 0 for all x,y e H;

There exists a continuous real-valued function k(t) on

R+ such that sup k(t) < 8 where _ is the dissipative constant of A, and
t_0

such that for each t > 0

123



(f(t,x)-f(t,y),x-y) < k(t) llx-Yll 2 for all x,y e H;

(ill) There exists a positive nondecreasing function L(r) of

r > 0 such that for all x e "0 and any s,t > 0

I If(t,x)-f(s,x) I I < L(l Ixl I)It-sl (i+I IAx+f(s,x)I I).

Theorem VI-6. Let the operator A of (VI-15) be densely defined,

dissipative and R(I-A)=H. Assume that f satisfies the conditions (i),

(ii), (iii). Then

(a) For any x e _(A), there exists a unique contraction solution

of (Vl-15) with x(0)=x;

(b) An equilibrium solution x e (or a periodic solution), if it

exists_ is stable;

(c) A stability region of the equilibrium solution x e is _(A)

which can be extended to the whole space H.

Proof. Let A(t)=A+f(t,.). We shall show that A(t) satisfies

all tile conditions in theorem VI-I. Since A is independent of t and f

is defined on all of t e R+, it follows that _(A(t))=_(A) which is

independent of t and thus the condition I is satisfied. By the condition

(iii), for each x c 0(A)

llA(t)x-A(s)xl I=I If(t,x)-f(s,x)ll < e(l Ixll)It-sl(l+l IAx+f(s,x) II )

which shows that the condition III is satisfied. To show the condition II,

we shall apply theorem V-10 as in tile proof of theorem V-If. Let T=-A

and for each t => 0 let Tt=l-f(t,-). Then both T and T t are monotone since

the dissipativity of A implies the monotonicity of T and by the condition

(ii), for any x,y c H

(Ttx-TtY,x-y) = (x-y,x-y) - (f(t,x)-f(t,y),x-y) > l lx-Yll 2

which implies that T t is monotone. By hypothesis, R(I+T)=R(I-A) =11 and

0(T)=_(A) is dense in H. For each t > 0, T t is, by the condition (i),
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defined and demicontinuous (i.e., continuous from the strong topology

to the weak topology of H) on H and is boundedon every boundedsubset

of H since the identity operator I also possessesthis property. On

setting y=0 in the condition (ii), wehave

(f(t,x),x) _ (f(t,0),x) _ llf(t,0) II IIxll. (Vl-16)

Hence the dissipativity of A and the relation (VI-16) imply that

IIT_+rtxll = II-A_Ttxll _ (-A_'Ttx,_)/llxll g (Ttx,x)/llxll"

= ((x,x)- (f(t,x),x))Zllxll _ Ilxll-IIf(t,o)ll

which shows that

I ITx+TtxlI + +_ as !!x!l + + " •

Therefore, all the conditions in theorem V-10 are satisfied. It follows

by applying that theorem that R(I-A(t))=R(T+Tt)=H for each t _ 0 which

shows condition II with _ (t) _ i. Finally, the dissipativity of A and

the condition (ii) imply that for each t > 0

(A(t)x-A(t)y,x-y) = (Ax-Ay,x-y)+ (f(t,x)-f(t,y),x-y) _ 0

for all x,y e Q(A). Thus A(t) is dissipative for each t _ 0 and so all

the conditions in theorem VI-I are satisfied. Hence for any x e _(A)

there exists a unique contraction solution of (VI-15) with x(0)=x. The

contraction property of solutions of (VI-15) implies that if an equilibrium

solution xe exists, then for any solution x(t) with x(0)=x e _(A)

llx(t)-xell=<llx-xell for all t => 0

which shows that the equilibrium solution is stable with a stability re_ion

Q(A). Since Q(A) is dense in H, the extension of the stability region to

the whole space II follows from lemma VI-I. Hence the theorem is completely

proved.
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The abovetheoremhas a counter part for the asymptotic stability

of anunperturbed solution (e.g. equilibrium solution or periodic solu-

tion), we shall showthis in the following.

Theorem Vl-7. Let the operator A of (VI-15) be densely defined,

strictly dissipative with dissipative constant B and let R(I-A)=H.

Assume that f satisfies the conditions (i), (ii)', _lll_. ±,_LL_

(a) For any x g D(A) there exists a unique contraction solution

of (VI-15) with x(0)=x and for any solution y(t) with y(0)=y _

l lx(t)-y(t)II _ e-_t(_-k(s)ds)IIx-yII- for all t => O; (VI-17)

(b) An equilibrium solution x (or a periodic solution), if
e

it exists_ is asymptotically stable;

(c) A stability region of the equilibrium solution x e is D(A)

which can be extended to the whole space If.

Proof. Let A(t)=A+f(t,.), we shall show that A(t) satisfies all

tile conditions in theorem VI-2. As in the proof of theorem VI-6, the

conditions I and III are satisfied. To show the condition II, note that

the dissipativity of A and R(I-A)=II imply that R(I - _ A)=H for all = > 0

(see lemma V-l). Let Tt= I - _(t)f(t,.). For .each t _ 0, choose a real

number _(t) such that 0 < _(t) _ k(t) -I (if k(t) _ O, choose, e.g., _(t)=l)

then T t is monotone, for by the condition (ii)'

(Ttx-TtY,x-y)=(x-y,x-y)-a(t) (f(t,x)-f(t,y),x-y) $ (l-_(t)k(t))llx-y11220.

With _(t) so choosen for each t _ O, the operator T=-_(t)A is monotone with

R(I+T)=_(I-_(t)A)=H and with _(T----_=_-_-_ = If. By the condition (i), T t is

defined and demicontinuous on all of II and is bounded on every bounded

subset of H, and by the dissipativity of _(t)A and the relation (VI-16)

llTx+Ttx ll=ll-_(t)Ax+Ttxll _ (-_(t)Ax+Ttx,x)/l Ixll _ (Ttx,x)/I Ixll

= (fct, ),x))/ll ll : II ll-=(t)llf(t;o)ll
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which implies that IITx+Ttxll ÷ +_ as Ilxll + 4_ . It follows by applying

theorem V-10 that for each t _ 0 we can choose an _(t) > 0 such that

R(I-_(t)A(t))=_(T+Tt)=H which shows the condition II. Moreover by the

strict dlsslpativity of A and the condition (ii)', for any x,y E

(A(t)x-A(t)y,x-Y)=(Ax-Ay,x-Y)+(f(t,x)-f(t,y),x-Y) _ -(g-k(t))llx-Yll 2

for each t > 0

which shows that A(t) is strictly dissipative with dissipative constant

B-k(t) for each t _ 0. It follows by applying theorem Vl-2 that (a) is

proved and the relation (Vl-6) holds with 8(s) replaced by B-k(s). Hence

if an equilibrium solution x e exists, then for any solution x(t) with x(0)=

=xeQ

-[t(8-k(s)ds) 'IX-Xel I for all t > 0IIx(t)-xell = e , =
t

which proves (b) since /(8-k(s))ds_ (8-_k(s))t for any t _ Oo Note that
o =

sup k(s) > O. It also proves that a stability region is D(A) The
-s_0

extension of P(A) into _=H follows from lemma VI-I which completes the

proof of part (c).

Corollary. Let the operator A of (VI-15) be densely defined,

strictly dissipative with dissipative constant 8 and let R(I-A)=H. Assume

that f(t,x) is uniformly Lipschitz continuous in x with Lipschitz constant

k < B, that is

llf(t,x)-f(t,Y)II _ kllx-yll for all x,y E H (Vl-18)

and let there exist a positive nondecreasing function L(r) of r > 0 such

that for all x _ P(A)

llf(t,x)-f(s,x)ll _ e(llxll) It-sl for all s,t _ 0.

Then the results (a), (b), (c) in theorem VI-7 are valid.
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Proof. We shall show that f(t,x) satisfies all the conditions

(1), (ii_, (ill). For each t _ O, the condition (VI-18) implies that f

is continuous from the strong topology to the strong topology and that

for any fixed Yo e H

llf(t,x) ll _ llf(t,Yo) ll+ kIlxIl+kIlYoll for all x e H

which is bounded whenever llxll is bounded. Thus the condition (i) is

satisfied. The condition (ii)'also follows from (VI-18) since for each

t > 0

(f(t,x)-f(t,y),x-y) < llf(t,x)-f(t,y)II l lx-yll _ k I Ix-yl 12= x,y e H.

Finally, the condition (ill) follows by hypothesis. Hence all the hypotheses

in theorem VI-7 are fullfilled and the result (a), (b), (c) follows immed-

iately.

Remarks. (a) In theorem VI-6, theorem VI-7 and the Corollary of

theorem VI-7, the condition R(I-A)=!I can be weakened by the condition

_(I-aA)=H for some e > 0 since by lemma V-I R(I-eA)=H for some _ > 0

implies R(I-A)=I{. (b) In theorem Vl-7, if A is dissipative rather than

strictly dissipative and if the function k(t) appearing in the condition

sup k(t) < O, the results still hold. (c) The contln-
(ii)' is such that t_0

uity of the real-valued function k(t) can be weakened to some extent, for

example, k(t) can be discontinuous at a finite number of points on R+ with

the values of k(t) properly defined at these points of discontinunity

(e.g., k(to) = k(t ° + 0) or k(to)=i/2 (k(t ° + 0) + k(t ° - 0)) where to is

a point of discontinuity of k(t)).

D. Semi-linear Nonstationary Equations

Another application of the results obtained in section B is

for the differential equations of the form

dx(__._t)= A (t)x(t) + f(t,x(t))
dt o

(VI-19)
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where Ao(t) is, for each t _ 0, a linear unbounded operator with D(Ao(t) ) and

R(Ao(t) ) both contained in a real Hilbert space H and f is a given

function from R+ x H into II. Again, on setting A(t)=Ao(t)+f(t,.) , the

equation of tile form (VI-19) becomes a special form of (VI-I). Differen-

tial equations of the semi-linear form (VI-19) have been investigated

rather extensively (e.g., see Browder [i] or Kato [9]), and in [9] it

gives a survey of the results obtained for this type of equation by using

seml-group theory. The object in this section is not to prove any new

theorems on the existence of a solution but rather to deduce some results

from the general theorem developed in section B and to extend these

results for the investigation of the asymptotic stability property of

a solution. In part I, we introduce some theorems based on the general

results of section B, and in Parts 2 and 3, which are the main object of

this section, we shall discuss some special equations of the form (VI-19).

Because of the hypothesis in these special forms is relatively simple,

it is expected that these results would be more convenient for applications

on certain physical problems, that is, on some concrete partial or ordin-

ary differential equations.

i. General Semi-linear Equations

Consider the operator differential equations of the form (Vl-19),

we first show the following:

Theorem Vl-8. Assume that A (t) satisfies the conditions I and
O

II (given in section B) and that for each t _ O, Ao(t) is dissipative with

_(A (t))=_ dense in If. If the operator A(t)=Ao(t)+f(t,') satisfies the
O

condition III and f satisfies the conditions (i) and (ii) (given in

section C). Then all the results (a), (b), (c) of theorem VI-6 hold.
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Proof. Consider the operator A(t)=Ao(t)+f(t,. ) as a nonlinear

operator in the equation (VI-I), we shall show that all the hypotheses

in theorem VI-I are satisfied. Since D(Ao(t))=Q is independent of t

and that f is defined on all of R+ x H, it follows that Q(A(t)) =

=_(Ao(t))=V is independent of t and thus A(t) satisfies the condition

I. By hypothesis for each t > O, A (t) is dissipative and by lemma V-I,
= o

the condition II implies that R(I-Ao(t))=H. It follows from the same

proof as in theorem Vl-6 that _(I-A(t))=H since for each fixed t > 0

we may take A (t) as the operator A in theorem VI-6. Note that all the
o

hypotheses for the proof of _(I-A)=H in that theorem are fullfilled if

we replace A by A (t) where t is fixed. Since this is true for each
o

t _ 0, the condition II is satisfied. The condition III is given by

hypothesis. By the dissipativity of A (t) and by the condition (ii), we
o

have for each t > 0

(A(t)x-A(t)y,x-y) = (Ao(t)x-Ao(t)y,x-y) + (f(t,x)-f(t,y),x-y) _ 0

for all x,y e V. Hence A(t) is dissipative for each t _ O. By applying

theorem VI-I, the result (a) is proved. The proof of (b) and (c) is

the same as in that of theorem VI-6.

Remark. The assumptions I and I II in the above theorem can be

replaced by (l-Ao(t))-i is strongly continuously differentiable in t

and f is demicontinuous in t. For a direct proof of this theorem see

[9]. It should be noted that the solution obtained in [9] is the so-

called "mild solution" which is the solution of an integral equation

reduced from the differential equation (VI-19).

Theorem VI-9. Assume that Ao(t ) satisfies the conditions I and

II with _ dense in H and for each t _ 0, let Ao(t) be strictly dissipa-
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tire with dissipative constant B(t) where B(t) is a positive real-valued

continuous function on R+. If the operator A(t)=Ao(t)+f(t,.) satisfies

the condition III and if f satisfies the conditions (i) and (li)'with

t

k(t) < 8(t) for each t _ 0 and /(B(s)-k(s))ds + +_ as t + _, then all the
o

results (a), (b), (c) of theorem VI-7 hold.

Proo___[f. It suffices to show that the operator A(t)=Ao(t)+f(t,.)

satisfies all the hypotheses in theorem VI-2. Tile condition I is obviously

satisfied and by hypothesis the condition III is satisfied. The proof

of the condition II follows the same argument as in the proof of theorem

Vl-7. Since for each fixed t > O, A (t) is strictly dissipative with
= o

dissipative constant 8(t), and by hypothesis f satisfies the condition

(ii); it follows that for any x,y e

(A(t)x-A(t)y,x-y) =(Ao(t)X-Ao(t)y,x-y)+(f(t,x)-f(t,y),x-y)

-(8(t)-k(t))IIx-yll 2 for all t _ 0

which shows that for each t > O, A(t) is strictly dissipative with

dissipative constant (8(t)-k(t)). Note that 8(t)-k(t) > 0 for all

t _ 0. Hence by theorem Vl-2, (a) and (c) are proved with the relation
t

lim
(VI-17) for B-k(s) replaced by B(s)-k(s). Since by hypothesis t-_° /

o

(8(s)-k(s))ds = _, it follows by the relation (VI-17) that if an

equilibrium solution x
e

(b).

exists, it is asymptotically stable which proves

2. Some Special Semi-linear Equations

The results developed in the preceeding sections of this chapter

are not easy to apply for partial differential equations. However, a

number of physical and engineering problems are fromulated by a system

of partial differential equations which can be reduced to the simplier

form

= AoX(t) + f(t,x)dt
(vl-20)
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where Ao, which is independent of t, is a linear unbounded operator

with domain V(A o) and range R(A o) both contained in a real Hilbert

space H and f is a given function from R+ x H into 11. Since (Vl-20)

is a special form of (VI-15) with A=A ° a linear operator, the results

obtained in section C are directly applicable. Note that the equation

(VI-20) is an extension of the equation (V-24) where f(t,x)=f(x). The

object in this section is to deduce some results similar to those in

section V-C, which would be easier to apply for a certain class of non-

stationary partial differential equations.

According to theorem 111-14, if Ao is the infinitesimal genera-

tor of a contraction semi-group of class Co, then Ao is densely defined,

dissipative and _(I-_)=H. Hence the following theorem is a direct

consequence of theorem VI-6.

Theorem VI-10. Let A be the infinitesimal generator of a
O

(linear) contraction seml-group of class C o . Assume that f satisfies

the conditions (i), (ii), (iil). Then all the results (a), (b), (c)

of theorem Vl-6 hold.

As to the asymptotic stability of a solution of (VI-20), we have

tile following theorem which is a special case of theorem Vl-7.

Theorem VI-II. Let A be the infinitesimal generator of a
o

(linear) negative contraction semi-group of class Co with the contractive

constant 8. Assume that f satisfies the conditions (i), (ii)' (iii)

Then all the results (a), (b), (c) of theorem Vl-7 hold•

Proof. Since A is the infinitesimal generator of a negative
o

contraction semi-group of class Co, it is densely defined, dissipative

as a special case, Aand R(I-_)=H. By applying theorem V-3 for A=A ° o

is strictly dissipative with dissipative constant B since the dissipa-
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tivlty of A in the sense of definition V-3 for a linear operator
O

coincides with the dlssipativity of A in the ordinary sense. Hence
O

all the results (a), (b), (c) follow from theorem VI-7.

Corollary. Let A ° be the infinitesimal generator of a (linear)

negative contraction semi-group of class Co with the contractive constant

8, and let f be uniformly Lipschitz continuous on R+ x H with k <

where k is the Lipschitz constant with respect to x. Then all the

results (a), (b), (c) of theorem VI-7 hold.

Proof. We show that all the hypothesis in the corollary of

theorem VI-7 are fulfilled. As in the proof of theorem VI-II, A is
O

densely definedj strictly dissipative with dissipative constant 8 and

R(I-Ao)=H. The uniform Lipschitz continuity of f on R+ x H implies

that the relation (VI-18) holds (with k < 8) and that there exists a

positive real number L such that for any x e I{

[If(t,x)-f(s,x)ll _ LIt-s I for all 8, t _ 0

which implies that the condition (iii) is satisfied. Hence by the

corollary of theorem VI-7, all the results in theorem VI-7 hold.

So far in this section, we have assumed that A is the infinite-
o

simal generator of a contraction semi-group of class C (The conditions
O

imposed on A (t) in theorems VI-8 and V 1-9 imply that for each t > 0,
O =

Ao(t) is the infinitesimal generator of a contraction semi-group of

class C (theorem 111-14)). In the remainder of this section, we shall
O

consider A as an unbounded closed linear operator. (The infinitesimal
O

generator of a semi-group is always closed). Before lookinz into this

type of operator, let us make some observations about the equation (VI-20).

Suppose that there exists an equilibrium solution x of (VI-20). Let
e
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z(t) = x(t)-x .
e

On substituting x(t) by z(t)+x in (Vl-20), we have
e

= A z(t) + F(t,z(t)) for all t > 0
dt o =

where

= + f(t,z(t) + Xe).F(t,z(t)) AoX e

c_.o_ by (_TT--1 ?_

AoX e + f(t,Xe) = 0 for all t => 0

it follows that F(t,0) = 0. Moreover, if f satisfies the conditions

(i) (ii) (iii) (or (i), (ii)', (iii)), so does F with possibly different

L(llxll) in the condition (iii). To show this, note that the trans-

lation mapping from x to x+x is a continuous one-to-one mapping from
e

all of H onto H so that F is defined on R+ x H into H. For each t > 0

and any Zl(t), z2(t ) e H

(F(t,z2(t))-F(t,Zl(t)),u) = (f(t,z2(t)+Xe)-f(t,Zl(t)+x e),u)

for every u e }i which implies that F is continuous from the strong

topology to the weak topology of H and is bounded on every bounded

subset of H since f has these properties. Note that Zl(t) + z2(t)

if and only if Zl(t)+Xe + z2(t)+Xe and that llz(t) ll is bounded if and

only if llz(t)+Xel I is bounded where x e is a fixed element in H. Thus

F satisfies the condition (i). For any x,y e H

(F(t,x)-F(t,y),x-y) = (f(t,X+Xe) - f(t,y+Xe),(x+x e) - (Y+Xe))

which shows that F satisfies the condition (ii) if f does. In case

f satisfies the condition (ii)', so does F since the above equality

implies that

(F(tsx)-F(t,y),x-y) _ k(t) ll(X+Xe)-(Y+Xe)ll 2 = k(t) llx-yll 2.

Finally, if f satisfies the condition (iii), then by the definition of

F for any z e P(Ao)
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[IF(t,z)-F(s,z)ll = llf(t,Z+Xe)-f(s,Z+Xe)It =<L(llZ+Xell)It-sl.

(i+I IAo(Z+Xe)+f(s,Z+Xe)ll) -- e(IlZ+Xell)It-sI(l+l IAoZ+F(s,z) II) <

< e(l Ixl I+I IXeIl)It-sl(l+11AoZ+F(s,z)l I)

since L( I IZ+Xel I) is nondecreasing (which implies that L( I IZ+Xel I) <

< e(llzIl+llXell) ). The function Ll([Izll)=e(llzII+IlXell) is a positive

nondecreasing function of I

Ilzlll+llxell __<IIz211+l xe

L(llZlll÷lxe

z I I > O, for if I I  lll <- II z211 then

I which implies that

]) __<L(llz211÷llXell).

The positivity of L 1 follows directly from the positivity of L. This

completes the proof.

It follows from the above observatlon that if an equilibrium

solution of (Vl-20) exists, we may assume that f(t,0) = 0 and thus the

investi_atlon of the stability property of an equilibrium solution is

the same as that of the null solution.

Another observation about equilibrium solutions of (VI-20) is

the following theorem.

Theorem VI-12. Let H be a real Hilbert space, and let A be
o

a strictly dissipative operator from H into H with the dissipative

constant B, i.e.,

(AoX,X) _ -sllxll 2 for all x e Q(Ao).

Assume that for any x,y e Q(Ao)

(f(t,x)-f(t,y),x-y) _ k(t) l Ix-yll 2 for all t _ 0

where k(t) is a real-valued function with k(t o) < _ for some to => 0.

Then an equilibrium solution x of (Vl-20), if it exists, is unique. In
e

particular, if f(t,0)=0 for all t $ 0, then the null solution is the

only equilibrium solution.
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Proof. Let Ye be an equilibrium solution. By (VI-12)

A x + f(t,x e AoY e f(t,y e =o e ) = 0 and + ) = 0 for all t > 0

which implies that

Ao(xe-Ye) + f(t,x e) - f(t,y e) = 0.

Hence, for all t > 0

0 = (Ao(Xe-Y e),xe-ye)+(f(t,xe)-f(t,ye),xe-y e) __<-(g-k(t))l IXe-Yel 12.

R,, h_,_n_h_ _--_(_ _ > 0 for some t > N _ _11_,,= _n_ _h_ _hn_T_

inequality that l lXe-Yel I = 0 which proves the uniqueness of x e.

Remark. The above theorem remains true if A is dissipative
-- O

and the function k(t) is negative for some t > 0 since under this
O =

condition, we have 0 < k(t) l IXe-Yel I for all t => 0 which is a contra-

diction unless I lXe-Yel I=0 since k(t o) < 0.

Corollary. Under the hypothesis in theorem VI-II (or in theorem

Vl-7) if an equilibrium solution exists, it is unique.

Tile uniqueness of the e_uilibrium solution in theorem VI-II (or

in theorem VI-7) is also a direct consequence of the negative contraction

property of the solution. For, if Xe and Ye are two equilibrium solutions

and y(t)=y e for all t > 0then since x(t)=x e =

l lXe-Yell =< e-Btl lXe-Yel I for all t > 0

which is impossible unless x =e Ye"

Now we return to the equation (Vl-20) where A is an unbounded
O

closed linear operator. In analogy to theorems V-15 to V-17, the

following theorems may be regarded as their respective extension.

Theorem VI-13. Let A be densely defined, closed and strictly
O

dissipative with dissipative constant B. Assume that A* is the closure
O

of its restriction to D(Ao) 0 V(A*) and that f satisfies tile conditions

(i), (ii)' (iii) where A* is the adjoint o_erator of A . Then all the
' 0 • 0

results (a), (b), (c) in theorem Vl-7 hold.
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Proof. It suffices to show that _(l-Ao)=II since all the other

conditions in theorem VI-7 are fulfilled by hypothesis. Note that

(Vl-20) is a special form of (VI-15) with A=A . But is has been shown
o

in the proof of theorem V-15 that R(I-Ao)=H. IIence the results follow.

Theorem VI-14. Let A be an unbounded self-adJoint operator
o

from part of H to H and let it be strictly dissipative with dissipative

constant B. Assume that for each t _ 0, f is uniformly Lipschitz con-

tinuous in x with Lipschitz constant k(t) where k(t) is a positive con-

tinuous function on R+ satisfying sup k(t) < _ and assume that for each
t_0

x E _(An) , f is uniformly Lipschitz continuous in t with Lipschitz

constant e_iIxll) where L(llxll) is a positive non-decreasin_ function

of !!x!!. Then all the results (a), (b), (c) of theorem VI-7 hold.

Proof. Since the self-adjoint operator A is densely defined,
o

closed and equals its adjoint operator A* (in particular _(Ao)=_(A_)) ,O '

it follows that A satisfies the requirements in theorem VI-13. By
o

hypothesis, for each t > 0

l lf(t,x)-f(t,y)ll _ k(t) l Ix-yll for all x,y E H (Vl-21)

which implies that f satisfies the conditions (i) and (ii)'. This is

due to the fact that for each t _ 0, (VI-21) implies that f is a

continuous in x (from the strong topology to the stron_ topology of If)

and that for a given Yo e H

llf(t,x) II _ llf(t,Yo) l l+k(t) llxl l+k(t) llYol I.

Hence for each t $ 0, I1f(t,x)II is bounded whenever llxll is bounded

since k(t) < B and llf(t,Yo) ll is bounded for each t (see (VI-22) below).

This proves the condition (i). Condition (ii)' follows also from (Vl-21)

since for any x, y e II

I(f(t,x)-f(t,y),x-y)I _ l lf(t,x)-f(t,y)ll iJx-yll _ k(t) llx-yl 12
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for all t _ O. By the assumption of uniform continuity of f in t,

for each x e V(Ao)

llf(t,x)-f(s,x)ll < L(I ]xl ])It-sl for all s,t > 0 (VI-22)

which shows that f satisfies the condition (iii). Hence the theorem

is proved by applying theorem VI-13.

Rem._____ar__k.It is obvious that the assumptions on f can be weakened

by assuming that f satisfies the conditions (i), (ii)', (iii). On the

other hand, a stronger assumption is that f is uniformly Lipschitz

continuous on R+ x H, that is, k(t) = k < B and L(IIxlI)=L>0.

It can happen that the given linear operator A ° of (VI-20) is

not self-adjoint in the original space H=(H,(.,.)) but it is possible

to find an e_uivalent inner product (''')i such that A ° is self-adjoint

in the space HI=(H,(.,.)I). In such a case, we have the following

theorem which is an extension of theorem VI-14.

Theorem VI-15. Let A be a densely defined linear operator from
O

H = (H, (.,.)) into H, and let f satisfy the conditions (i) (iii) in H.

If there is an equivalent inner product (''')i such that A ° is self-adJoint

and is strictly dissiaptive with the dissipative constant B with respect

to (''')I' and such that for any x,y _ H

(f(t'x)-f(t'y)'x-Y)l =< k(t) llx-yll21 for all t => 0 (VI-23)

sup k(t)<8
where k(t) is a continuous real-valued function on R+ such that t_0

Then, (a) For any x c D(Ao) , there exists a unique solution x(t) of

(Vl-20) with x(0)=x. (b) If an equilibrium solution xe exists, it is

asymptotically stable. (c) A stability region of x e is _(A o) which can

be extended to the whole space H in the sense of lemma VI-I.

Proof. Consider A as an operator from the space HI--(H, (. ,.) I)
-- O

into III. Since A ° is self-adjoint in HI, it is densely defined, closed
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and _(Ao)=D(A _) in H I . It follows by hypothesis that A ° satisfies the

conditions in theorem VI-13 where the underlying space is H I . The

continuity of f being invariant under equivalent norms together with

the relation (Vl-9) imply that if f is demicontinuous in H, it is

demicontinuous in H I . Thus f satisfies the condition (i) in the H l-

space since by hypothesis, f possesses this property in the H-space.

Note that the boundedness of f is also invariant under equivalent norms.

Moreover, by the condition (iii) in H and the equivalence relation (Vl-7)

[]f(t,x)-f(s,x)lll_ YI [f(t,x)-f(s,x)l I _ YL(I Ixl ])It-Sl(l+I IAox+f(s,x) ll)

_ L(6-1[ Ixlll)It-sl(l+6-111Aox+f(s,x)]II)

since [ixl[ _ 6-1][x][ I and t(IIxl[) is nondecreasing. Let % = max(l,6 -I)

and set Ll(l[xlll)=YIL(6-111xlll) , then L I is a positive nondecreasing

function since L is. Hence

[If(t,x)-f(s,x)l[ I _ Ll(l IX[[l )It-s](l+[ IAox+f(s,x) ll I)

which shows that the condition (iii) is satisfied with respect to II.[I I.

By applying theorem VI-13, all the results (a), (b), (c) of theorem

VI-7 hold in the space H I. Since for any x e _(Ao) , there exists a unique

contraction solution x(t) of (VI-20) with x(0)=x in HI, it follows by

lemma Vl-3 that x(t) is also the unique solution with x(0)=x in H. Thus

(a) is proved. Since the relation (VI-17) holds in HI, and by lemma VI-3

if x e is an equilibrium solution in H 1 it is also an equilibrium solution

in H, It follows that for any solution x(t) in H with x(0)=x e Q(Ao)

IIx(t)-Xell = 6-111 (t)-Xell 1 =  -le-  B-k(s))dSllx-Xelll=

-/t (8-k(s)) ds
_(y/6) e o IIX-Xel ] for all t $ 0
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which shows that the equilibrium solution x is asymptotically stable
e

lim t
since sup k(t)<8 implies t-_ / (8-k(s))ds= +_. The above inequalityt>O

= o

is true for any x c Q(Ao) showing that a stability region is Q(Ao).

By lemma VI-I_ this region can be extended to the whole space since

D(Ao) is dense in H. Hence the theorem is completely proved.

It is clear that theorems VI-13 to V 1-15 are particularly useful

for the class of partial differential equations which can be formulated

in the form of (VI-20) where A is a concrete partial differential
o

operator defined in a suitable Hilbert space H into H and f is a (non-

linear) function defined on R+ x H into H. It happens often that the oper-

ator A reduced from a partial differential operator is a densely defined
o

closed operator or its extension is a closed operator (i.e.j A is clos-
o

able). Theorem VI-14 and VI-15 suggest that if A ° is self-adjoint in H

or if an equivalent inner product can be found such that A ° is self-

adjoint in the equivalent Hilbert space }71, then the strict dlssipatlvity

imposed on A in these theorems is likely to give some stability criteria
o

for the coefficients of the partial differential operator and possibly

including the parameters involved in the boundary conditions. On the

other hand, in certain design or control processes, tile function f itself

or the parameters involved in this function can be varied so that the

conditions imposed on f such as (VI-22) and (VI-23) are also likely to

yield some criteria among this class of functions or among the parameters

involved in the _iven function. In practical problems, these criteria

are often in terms of physical properties, dimensional parameters, control

functions_ etc. which are originated from the derivation of the differen-

tial dquations describing this system. Thus they are not only important

for the design or control prupose but also gives some interpretation of

the physical meaning about the system.
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3. Ordinary Differential Equations

In case the operator A ° in the equation (VI-20) is a bounded

linear operator on H to H, we can write (Vl-20) as an ordinary differ-

ential equation of the form

dx(t) = f(t,x(t))
dt

where f(t,x) is a function from R+ x H into If. Since the equation

(VI-24) is also a special form of (VI-15) with A E 0 which is densely

defined, dissipative, and R(I-O)=H, we have immediately the following

theorems.

Theorem VI-16.

(given in section C).

(VI-24)

Let f satisfies the conditions (i), (ii), (iii)

Then, (a) For any x e H, there exists a unique

contraction solution of (VI-24) with x(O)=x. (b) If an equilibrium

solution x exists, it is stable. (e) The stability region is I;.
e

Theorem VI-17. If f satisfies the conditions (i), (ii)', (iii)

sup k(t)<0) then the results (a), (c) of theoremVI-16
with B=0 (i.e., t$O

hold, and in addition: (b)' For any solution y(t) with y(0)=y _ !!

tk(s)dsllx(t)-y(t)ll _ e llx-yll for all t $ 0.

Thus, if an equilibrium solution x exists, it is asymptotically stable
e

The above two theorems can be proved directly by considering the

operator A(t) of (VI-I) as f(t,') and show that the conditions in theorem

VI-I and theorem VI-2 are satisfied respectively. To see this, we first

note that A(t)=f(t,.) satisfies the conditions I and III by the assumption

(i) and (iii) respectively. To show that A (t) satisfies the condition II,

let T=I and Tt=-f(t,. ). By following the proof of theorem VI-6, it can

easily be shown that all the conditions in theorem (V-10) are satisfied

which implies that for each t > O, _(I-A(t))=_(I-f(t,.))=H. The dissipa-
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tivity of A(t) follows from tile assumption (ii). Hence all the results

of theorem VI-16 follow by applying theorem VI-I. A direct proof for

theorem VI-17 can similarly be sh_n.

It should be noted that the existence and the uniqueness of a

so!,jt!on of (VI-24) do not require that k(t) be negative (c.f. [!], [9]).

However under this condition, the asymptotic stability property of a

solution can not be ensured.

Theorem VI-16 and VI-17 remain true if an equivalent inner product

('")i can be found such that f satisfies respectively the conditions (ii)

and (ii)' with respect to (''')i" In fact, we have the following theorem

whose proof follows that of theorem VI-15.

Theorem VI-18. Assume that f satisfies the conditions (i),

(iii) in the Hilbert space H=(H,(.,.)). If there exists an equivalent

inner product (''')i such that

(f(t,x)-f(t,y),x-y) I < k(t) llx-yll 2 for all t > 0= 1 =

where k(t) is a continuous real-valued function defined on R+ with

sup k(t) < 0, then the results (a), (b)' (c) of theorem VI-17 hold
t_0

except the contraction property of the solutions. If k(t)=0, (b)'

should be replaced by (b) in theorem VI-16.

In theorems VI-17 and VI-18, if an equilibrium solution x exists,
e

it is unique. A weaker condition for the uniqueness of an equilibrium

solution can be obtained by applying theorem VI-12. We show this in the

following.

Theorem VI-19. Assume that for any x,y e H

(f(t,x)-f(t,y),x-y) _ k(t) Ilx-yll 2 for all t _ 0

k(t o) > 0.where k(t) is a real-valued function with < 0 for some t o =
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Then an equilibrium solution Xe, if it exists, is unique. In particular,

if f(t,0)=0 for all t __>0, then the null solution is the only equilibrium

solution.

Proof. Let Ye be any equilibrium solution. By (VI-12)

f(t,x e) = 0 and f(t,y e) = 0 for all t _ 0

which implies that

0 = (f(t,Xe)-f(t,Ye),Xe-Y e) _ k(t) llXe-Yell 2 for all t > O.

But k(to) < O, the above inequality is impossible unless llxe-Yell=0.

Thus the uniqueness of x is proved.
e
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Vll. APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS

The stability and existence thoery of the operational

differential equations developed in Chapters IV, V, Vl deals with

unbounded and nonlinear operators which are extensions of certain

concrete linear and nonlinear partial differential operators res-

pectively. Thus the solutions of the operational differential equa-

tions are closely related to the concept of generalized solutions

(distribution solutions, weak solutions, etc.) of boundary-value

problems for partial differential equations. By a suitable choice

of a function space (such as L2(_), Hm(_)), the results obtained

in the previous mentioned chapters are directly applicable. In

this chapter, we do not intend to solve general nonlinear partial

differential equations but rather to apply some of the results

obtained in Chapters IV, V, VI to certain semi-linear partial differ-

ential equations (which occurs often in physical problems) in order

to illustrate some steps in applying the theorems developed for

operational differential equations.

A. Elliptic Formal Partial Differential Operators

It is known that a linear partial differential operator can

be, under suitable conditions, formulated as a linear operator in a

function space such as Banach space or Hilbert space. In this section,

we shall formulate an elliptic partial differential operator as an

unbounded linear operator in the real llilbert space L2(_). Before

giving a formal definition of an elliptic partial differential opera-

tor, it is convenient to use the followin_ conventional notations:
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X=(Xl,X2,''',X n) and _ =(_l,_2,..-,_n) denote variable points in Rn;
n

lal =j_l aj where _ = (_l,a2,...,an) whose components are non-negatlve

integers; D a al a2
= D 1 D 2 ...D_n where Dj = _--_. for j=l,2,...,n; if lal=0

3

tile operator D e is defined to be the identity operator; _ denotes the

_a I _a 2 _a n ...an(X).expression ... and aa(x ) denotes the expression aala2

With these notations, we first give the following definition of a formal

partial differential operator.

Definition VII-I. Let the operator

L =1! ] ao_(X) Da,=<p

where p is a positive integer and the coefficients a (x) are infinitely
a " "

differentiable functions in an open set _R n. Then L is called a formal

L*(.) =l!lg p (-l)leID_(a (×)(.))

which is also a formal partial differential operator is called the

(real) formal adjoint of L. If L=L *, then L is said to be formally

self-adjoint.

Now we give a formal definition of an elliptic differential

operator.

Definition VII-2. Let

L = aa(x)
I l=<p

be a formal partial differential operator of order p defined in a domain

of the Euclidean space Rn. If for each non-zero vector _ in Rn

I![=p aa(x) Ca _ 0 x _ _,

then the operator L is said to be elliptic. Thus, the requirement of

ellipticity for a partial differential operator is the analogue of the
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condition that the leading coefficient should be non-vanishinR.

For the case of secondorder elliptic partial differential

operator (i.e., p=2), the operatorL can be written in the form

n _ n
L : [ aij(x),--+ [ bi + e(X)

i,j=l _i _j i=l

with the requirement that for any non-zero vector E in R n

n

i,j=laij

The elliptic partial differential operator L can be formulated as

an operator in L2(_) in different ways. For example, we may define

the operator T to be the restriction of L with domain _(T)=C:(_), the

set of all infinitely differentiahle functions with compact support

in _. T is a densely defined linear operator from L2(_) into L2(_)

C:(_) is dense in L2(_) (see theorem III-17). The domain ofsince

T is narrower than necessary; in the above definition we could replace

C:(_) by C_(_) since we need only p-th order derivatives in constructing

L, there by obtaining an extension of T. We can also define a larger

extension T 1 of T by admitting in its domain all functions u e L2(_)

such that u e cP(_) and Lu e L2(_) (here u need not have compact support).

Since T is densely defined and T=TI, it follows that T 1 is densely

defined and so both T* and T_ exist. The question may arise that if

the formal partial differential operator L is self-adJoint, that is,

L=L*, whether or not T* (or T_) is also self-adJoint. To answer this

question for the case of the operator T, we state the following theorem

whose proof can be found in the book by _unford and Schwartz [6].

Theorem VII-I. Let L be an elliptic formal partial differential

operator of even order 2p defined in a domain _ in Rn. Suppose that L
o
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is of the form

L =I! a (X) D aI _2p a (VII-l)

and that

(-I)P I!I=2P a_(x) _a > 0, x E no, E e R n, _ # 0. (VII-2)

Let _ be a bounded subdomain whose closure is contained in _ Suppose
o"

that the boundary of _ is a smooth surface 3 9, and that no point in 9

A
is interior to the closure of _. Let T and T be the operators in the

Hilbert space L2(_) defined by the equation

A
OCT_=OCT_ = _ u _ C_(_" ,,CY_ = _ ,,cY_=. p-I = v o_

_,., .. _ u(X) 0, . c 3..,

^
Tu = Lu, Tu = L'u, u e V(T) = D(T)

k
where _ denotes the k-th normal derivatives on _ _. Let A and A be the

^ ^ A
closure of T and T, respectively. Then (i) A* = A and (A)* = A. (ii) o(A),

the spectrum of A, is a countable discrete set of points with no finite

limit point. (iii) If _ { o(A), (II-A) -I is a compact operator.

Corollary. Under the hypotheses of theorem VII-I and, in addition,

L is formally self-adjoint so that L=L *. Then (i) the operator A is self-

adJoint, A=A*; (ii) The spectrum o(A) is a sequence of points { _ }
n

tending to =, and for _ _ o(A); R(I;A) is a compact operator.

Remark. Suppose that the condition (VII-2) in theorem VlI-I is

replaced by the condition

(-i) p _ aa(X) Ca <0, X e _o' ¢ c Rn, ¢ # 0 (VII-2)'

l l=2p
A

then -L satisfies the hypothesis in the above theorem in which -T, -T,

A A A

-A and -A would be the operators associated with -L where T, T, A and A

are the operators defined in the theorem for the operator L. Thus if

L is formally self-adJoint so is -L and by applying the above corollary
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-A=(-A)* which implies A=A*. Hence theorem VlI-I and its corollary,

on the part of self-adjointness of A, remains valid if the condition

(VII-2) is replaced by the condition (VII-2)'.

It follows from the above theorem that under suitable conditions

on the leadin_ coefficients of L and a smooth boundary condition on _,

the elliptic partial differential operator L can be formulated as a

linear operator T in L2(_) such that if L is formally self-adJolnt then

the closure of T is also self-adjoint. This formulation enables us to

apply some of the results developed in Chapters V and VI for certain

semi-linear partial differential equations.

It is known that [6] under the conditions of the above theorem

and if _ is a bounded open set contained in _ then the Gardln_'s
o

Inequality holds, that is there exists constant K < _ and k > 0 such

that

whereli"If
P

(Lu,u) + K(u,u) > k I lul 12 u e C_(_)
= p o

P
is the norm of the llilbert space H o (_) .

B. Semi-linear Partial Differential Equations

The formulation of a formal linear partial differential operator

as a linear operator in L2(_) in the previous section enables us to

establish some existence and stability criteria amon_ the coefficients

of the formal differential operator for a certain class of stationary and

non-stationary partial differential equations. In this section, we give

some applications of the results obtained in Chapters IV, V and VI to

a class of linear and semi-linear partial differential equations which

can be served as an illustration of some steps in applying the theorems

developed for operational differential equations. In the following, the

first simple example of a linear partial differential equation gives a
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fairly detailed description of the applicatlon from which some more

general equations or non-zero boundary conditions can easily be obtained.

E_xample VII-I. Consider the simple case of the linear partial

differential equation

8u a(X) _2u
_-f= _x-fZ+ b(x) _x + c(X)u x _ (0,i)

with the boundary conditions

u(t,0) = u(t,l) = 0 (t > 0).

Assume that the coefficient a(X) is positive (or negative) on [0,I]

and that a(X), b(X), c(X) are all infinitely differentlable functions

in an open interval I containing [0, i]. Then the linear operator
o

82
e = a(x) -- + b(x) 8

_X 2 -_ + c(X)

is a formal partial differential operator defined in I o. Moreover, by

the assumption a(X) > 0 for all X g [0,I] we have

-a(X)_ 2 < 0 for all _ e R I with _ # 0 and x e [0,i].

It follows that -L is an elliptic partial differential operator. The

formal adjoint operator of L is given as

L*(.) 22
= -- (a(X)(.)) - _ (b(x)(')) + c(X)(.)

_x 2

which is also an elliptic partial differential operator. It is easily

shown by a simple calculation that equation (VII-3) can be reduced to

the form

where

_u = i_/__
_t q(x)

x

(b(_)/a(_))d_
q(X) = (a(x)) -I e o

fX(b(_)/a(_))d_

P(X) = eXo = a(X)q(X).

(P(X) _) + c(X)u
_X

(X e [0,X] fixed)
o

(VII-3)

(VII-4)

(VIII-3)'

(Vll-5)
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Let us seek a solution in the real Hilbert space L2(0,1) in which the

L 2
inner product between any pair of elements u, v e (0,1) is defined by

1

(u, v) = /u(×) v(X) dX.

o

Define the operator T in L2(0,1) as the restriction of L on Co(0,1)

A _
and T the restriction of L* on C (0,i), that is

o

D(T) = V(T) = C (0,i); Tu=Lu and Tu=L*u, u e _(T).
o

Let A and A denote the closure of T and T respectively (T and T are

closable). Then V(A) is dense in L2(0,1) since _(A)=_P(T) = C_(0,1)

A
which is dense in L2(0,1)o Thus A* and (A)* both exist. In general, T

is not self-adjoint with respect to the inner product defined in (VII-6)

(vii-6)

as can be seen by "integration by parts" of the integral

i

(u,Tv) = fu(X) T v (X) dx u, v E D(T)

o

which, in general, is not equal to (v, Tu) for all u,v c _(T). However,

by defining the scalar functional V(u,v) by

I

V(u,v) = (u, qv) = lu(X) q(X) v(X) dX (Vll-6)'

o

where the function q(X) is the known function given in (VII-5) then

V(u,v) defines an equilvaent inner product (''')i such that

(Tu,v) 1 = (u, Tv) I

To see this, define

for all u, v e _(T).

which implies that (''')i

(u,v)I = V(u,v)

then it is obvious that (''')I possesses all the properties of an inner

1 2
product. Since (u,u) I = (u,qu) = I qu d_, it follows that

o

min 12 2 < C max
O_Z_l q(X)) [lul _ I lul I1 : "O_X_l q(x)) 11u112

and (',.) are equivalent. Notice that q(x)>0
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and is continuous over the closed interval [0,i] so that it actually

attains its maximum and minimum values bounded away from zero and _.

For any u, v e _(T), on integrating by parts and taking notice that

the boundary conditions are satisfied for any u e _(T) we have

i

(u,Tv) I = (u,qTv) = / uq[q -I
O

;_v

8-_ (P _) + cv]dX

1 i
= /(_p 8u _v _ _u

8--_8"_ + c q u v)dX = / [v _ (e _) +
O O

c q u v]dX = (Tu,v)I

A

which shows that T=T. It follows by applying theorem VlI-I and the

remark following that theorem that A=(1)*=A* which shows that A is

o

self-adjoint in the equivalent Hilbert space L I (0,i) equipped with the

inner product (''')i" Moreover, the above equality implies that for

any u E _(T)

i 1

8u )2 _ t8u, 2 u 2
(u,Tu) I = - /[P(-_ - c q u2ldX = - / [a ,,_) -c q ]dX .

O O

On setting Ul= ql/2 u then I IUlll=l lull 1 and by an elementary calculation

we have

(8u. 2 8Ul 2 i 8u_
aq._-_) = a(_--_) - _ (b-a') _ +

I (b-a') 2 2

4 a Ul (VII-7)

d

where a' E _x a(x). Hence, integrating by parts and using the well

known inequality

1 lu2/ du 2 72(_) dX _ / dX (Vll-8)
O O

which is valid for any u(x) satisfying the condition (VII-4), we have

1
8Ul i i (b- ')2 2

(u'TU)l = - / [a(_ -12 + (7 (b'-a") + _ : - c) ulldX
O

1
i

__<- / [7 2 ami n +_ (b'-a") +
O

,,2
i (b-a

- clu2 - llu II
2

4 a = i

where

min

o__<x<1

min

amin =O<X__<l a(X)

1 i (b(x)-a'(x)._, 2 c(X) ]
[ 2 amin +_ (b'(x)-a"(x)) + 4 a(x) - "
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It follows that if B=O or B>0 then T is dissipative or strictly dissipa-

tive, respectively, with respect to ('")i" The dissipativity or strict

dissipativity of T implies the dissipativity or strict dissipativity,

respectively, of A. To see this, let u e 0(A) then by the construction

of the closure of a closable operator there exists a sequence {Un}=D(T)

such that u + u and lim Tu exists and equals Au (see the definition
n n-_ n

of closable operator following theorem III-i). Hence by the continuity

of inner product, we have

2 - IIull2
lim (TUn , < lim(-Bllu II1) - 1(Au'u) I = n-_= Un)l = n -_ n

which shows the dissipativity and strict dissipativity of A. Therefore,

by applying theorems V-17 and V-13 with f m 0 we have the following results.

Theorem VII-2 . Assume that the coefficients a(x), b(x) and c(x)

of (VII-3) are infinitely defferentiable over any open interval I con-
- O

taining [0,i] and that a(X) is positive on [0,i]. If the condition

rain [2 a + i (x)) 2
= O<x<l== rain _ (b'(x)-a"(x))_ (b(X)-a'a(x) - c(x)] $ 0

(VII-9)

min a(X) and a'(X) d a(x) a"(x) = d2
is satisfied where ami n = 0_X_l = _ ' d_ a(x),

then for any initial element Uo(X) e _(A) there exists a unique solution

u(t,X) in the sense of definition VI-I with u(0,X)=Uo(X). Moreover, the

null solution of (VII-l) is stable if B=0 and is asymptotically stable if

B > 0 and in tile later case the null solution is the only equilibrium

solution.

i b(x) 2
As an example of the above theorem, take a(X) = _ , =_x,

c(x) = (x 2 +_) where R is a positive constant to be determined, then

2 2

0<x<Imin [ _ +_+i_ _ _ 2 +_ _ i= _ R X) - (X 2 )] =

4
Ilence B > 0 if 0 < R < _ which shows the same result as given In [3].
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Remark: The solution u(t,x) i, theorema VII-2 is in fact a

du(t_x) = Au(t,x) in thesolution of (VII-3) in the strong sense i.e., - dt

norm topology as can be seen by apDlyln _ the corollary of theorem III-14.

lloweVer, in the case of semi-linear equations theorem III-14 and its

corollary do not apply. Thus D we shall assume that any solution in the

following discussion _s in the sense of definition VI-I.

Example VII-2. Consider the partial differential equation

_u a(X) _2u + b(X) _-_ + c(_)u + f(u) (VII-10)
_t _X 2

with the boundary conditions u(t,0)=u(t,l)=0 where a(X), b(x), c(x)

are the same as in theorem VII-2 and f is a nonlinear function defined

on L2(0,1) to L2(0,1). According to theorem V-17, if f is continuous

on L2(0,1) and is bounded on bounded subsets of L2(0,!) such that

2 , L 2
(f(u)-f(v),u-v) 1 _ klllU-Vl Ii with k I < B u,v e (0,I)

!

where ('")i is the equivalent inner product defined in (VII-6) and B

is given by (VII-9), then all the results in theorem VII-2 with respect

to an equilibrium solution, if it exists 9 remain valid. In particular if

f(0)=0, tile null solution is exponentially asymptotically stable.

To illustrate the above statement take, for example_ the function

2

f(u) = k u (_2 > 0). (VII-If)

%2+u2

It is obvious that f is continuous on L2(0_I) (in the strong topology)

L 2
and is bounded on (0,I). By the definition of (''')i in (VII-6)'

1 2 2
U

(f(u)-f(v)'u-v)l = of k( _-_+u2- -'_v)q(u-v)dX%2+v2

1

= k %2 f

o

u+v

(_2+u2)(X2+v2) q(u-v) 2 dX

2
< _2 max Ik(u(x)+v(X)_ I llu_vlll •
= 0_X_I (%2+u2(X))(X2+v2(X))
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It is easily shown that for any real number u ,v

lu+vl 1
ii i <

(_2+u2) (_2+v2) 1%3[

which implies that

(VII-12)

(f(u)-f(v),u-v) I < l'_k_l l lu-vl I_

I_I_B then the existence and unlaueness of a solutionIt follows that if

for any initial element u (x) e D(A) are ensured. Moreover the null
o

solution is exponentially asymptotically stable with stability region _(A).

The above example gives general conditions on the coefficients

of the partial differential operator L and on the nonlinear function f

which depends on u. In case f is a function of both t and u, additional

restriction on f is necessary. These conditions are given as an example.

Example Vll-3. Consider the non-stationary semi-linear eouation

_u _2u _u

_--_= a(x) --+ b(x) _+ c(X)u + f(t,u) (Vll-13)
_x 2

with the same boundary conditions u(t,0)=u(t,l)=0 where a(x), b(x) and

c(x) remain the same as in example VII-I. According to theorem VI-15,

if f satisfies the conditions (i) and (iii) given in section C of Chapter

R+=Vl and if there exists a continuous real-valued function k(t) on [0, =)

L 2
sup k(t) < 8 where B is given by (VII-9) such that for any u,v e (0,i)

with t>0

(f(t,u)-f(t,v),u-v)l =< k(t) l lu-vl 121 (t => 0) (Vll-14)

then for any initial element Uo(X) e D(A) there exists a unique solution

u(t,x) with u(0,X)=Uo(X) , and if an equilibrium solution exists, it is

unique and is asymptotically stable.

Take, for instance, the function

ku2 (Cl,C 2 > 0).

f(t,u) = (%2+u2)(cl+c2t)
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It is obvious that f is defined on R+ x L2(0,1) into L2(0,1) and is

such that for each t __>0 it is continuous on L2(0,1) (in the stron_

topology) and is boundeduniformly which implies that f satisfies

the condition (i) in theoremVI-15.

s,t > 0

For any u(X) e _(Ao) and any

I If(t,u)-f(s,u) I l=I I
ku2 c2(s-t)

_2+u2 (Cl+C2t)(C'l+C2S_I

Ic2kI 2 Ic2kI
=<T II_II Is-tl _-< 2

c I A-+u- c I

Is-t I

which shows that f satisfies the condition (iii). Finally, by using

(VII-12) for any u,v E L2(0,1)

k

(f(t,u)-f(t,v) ,u-v) I = Cl+C----_t

1 2 2

! 2 v( u o 2 )q(u-v)dx <
+u 2 __+v

< 1 llu-vl12 = k(t) llu-v[ [2
Cl+C2t i 1

Ikl sup k(t) =1 is a continuous function on R+ with t>__0where k(t) -- Cl+C2t

Ikl= Cl ]_] . It follows by applying theorem Vl-15 that if __<B

then all the results stated above are valid. Since in this particular

case, f(t,0) = 0, which implies that the null solution is asymptotically

stable.

In the examples above, we assumed that the boundary conditions

were u(t,0)=u(t,l)=0. In the case of non-zero boundary conditions, a

suitable transformation of the unknown function can reduce these condi-

tions into zero boundary conditions without affecting the existence or

stability of the original system. The following example gives such an

illustration.
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Example VII-4. Consider the same problem as in example Vll-3

except with the boundary conditions replaced by

u(t,0)=ho(t) and u(t,l)=hl(t) (t _ 0) (VII-15)

where h o and h I are two given continuously differentiable functions of

t > 0. On setting

v(t,X) = u(t,X) - (l-X)ho(t) -Xhl(t) (t _ O) (VII-16)

equation (VII-13) is reduced to

_v = a(X) _2v + b(x) _-+ c(X)v + fl(t,v)
_t _X2

with the boundary conditions v(t,O)=v(t,l)=O where

fl(t,v) = f(t,Vl) - (l-X)h_(t)-xhi(t)+b(x)(hl(t)-ho(t)) +

+ c(x)(xhl(x) + (l-X)ho(t))

(VII-13)'

(VIl-17)

with Vl(t,X)=v(t,X)+(l-X)ho(t)+Xhl(t). Suppose that fl satisfies all

the conditions in theorem VI-15, then for any two initial elements Vl(0,x)

and v2(0,x) e _(A) theorem VI-15 implies that there exists two solutions

Vl(tJx) and v2(t,X) , respectively, such that
t

- / (B-k(s))ds

llVl(t,X)-Vm(t,X)ll _ M e o llVl(O,X)_v2(O,x)l I

where M $ i, B is given in (VII-9) and k(t) is given in (VII-14) with

f replaced by fl" By the relation (VII-16)

ul (t,X)-u2 (t,X)=Vl (t,X)-V2 (t,X)
(t > O, x E [0,i]),

it follows that t

-/ (B-k(s)) as

l lUl(t,X)-u2(t,X)II < M e o IIUl(0,x)-u2(0,x)ll

which shows that the existence, uniqueness and stability of a solution

of the transformed system with homogeneous boundary condtions implies

the same property of a solution of the original system with non-homogeneous
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boundary conditions. Hence the investigation of the equation (VII- 13) with

the non-homogeneous boundary conditions (VII-15) is reduced to the one

with homogeneous boundary conditions by taking the transformed function

fl as the given nonlinear function.

It is to be noted that if an equilibrium solution v exists for
e

the transformed equation, it does not, in general, imply the existence of

an equilibrium solution u of the original equation. In fact, if h (t)
e o

and hi(t ) are not both constant no equilibrium solution of the original

system can exist. (In physical problems, this type of boundary condi-

tions often generates periodic solutions).

The above examples are given in the one-dimensional space which

.......... _ _ _....... _ ^- ^_ L=C_Ln±qU_ in liuearAU£ LLIUI_EIH_

operators in a Hilbert space from formal partial differential operators

and which give an application of some of the results developed for

operational differential e_uations to partial differential equations.

Following the same idea as in the one-dimenslonal case, the extension

of the above results to more general n-dimensional space-dependent

partial differential operators bears no d_fficulty. For the sake

of simplicity, we limit our discussion to second order partial differ-

ential equations which occur often in physical problems.

Example VII-5. Consider the second order linear differential

equations of the form

n
_u _ _u

--_t= i,j=iZ _(aij(X) _.)3 + c(X)u X e a (Vll-18)

with the boundary conditions

u(t,X')=0 X' e _ _ t $ 0 (Vll-19)

where X=(Xl,×2,...,Xn) , _ is a bounded open subset of the Euclidean

space Rn with boundary B_ which is a smooth surface and no

point in _ _ is interior to _, the closure of _. Assume
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that a..(x) = aji(X) (i)j=l,2,...,n) and together with c(X) are13

infinitely differentiable real-valued functions in a domain _ which
O

contains _ and that there exists a positive constant _ such that

n n
2

[ aij(x)_i_j> a [ _i x e _o' _ _ Rn"
i,j=l i=l

(Vll-20)

By definition VII-2, the operator

e -'-

n

_ (x) _ )+ c(x)
_-_. (aij

i,j=l l 3

is an elliptic partial differential operator in _o since under the

assumption (VII-20)

(-i)

n

i,j=l
aij(X) _i_j # 0, X e no, _ e Rn, _ # 0.

In fact, if the operator L satisfies the condition (Vll-20), it is said

to be strongly elliptic. It is easily seen by definition that the operator

L is self-adjoint i.e., L=L *. Let T be the operator in L2(_) defined by

D(T) = {u e C_(_);u(X')=O, X' e B _}

Tu=Lu u a _(T),

and let A be the closure of T. By the corollary of theorem VII-I, A

is self-adjoint. For any u e _(T), integration by parts yields

n

(u,Tu) = /uTudX = f [ _ u (aij _.)
_ i,j=l "_-X-i (X) 3 + c(X)u2]dX

n

u _u c(x) u2]dX
=- f [ [ aij(x)_i _x

i,J =I 3

where dX= dXldX2...dXn. By the assumption (Vll-20) and using the well

known inequality [24]

n

/ _ _u2 U 2(_! dX => y f dX
_i=l - i

(VII-21)
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where y is a positive real number, we obtain

n

(u,ru) _ -/ [_ _ (_u. 2 _ c(x) u2]dx _ -f (_y - c(X))u 2 dX

- em)IIull2 = _I lull 2

max
where c = - c(X) and 8=_y-c . Hence, T is dissipative if B=0

m xe_ m

and is strictly dissipative if B>O. The dissipativity and strict

dissipativity of A follow from the dissipativity and strict dissipativity,

respectively, of T as has been shown in example VII-I since A is the

closure of T. Therefore, A satisfies all the hypotheses in theorem V-16.

To summarize, we can state the following theorem by applying theorem

V-16 with f E O.

Theorem Vll-3. Assume that all the real-valued functions aij(X)=aji(X )

(i,j=!,2,...,n) and c(x) in equation (VII-18) are infinitely differentiable

in a domain _ containing _, the closure of _, where _ is a bounded open
o

set in Rn whose boundary _ is a smooth surface and no point of 3_ is

interior to 5. If the condition (VII-20) is satisfied and if

max

= eY - xe_ c(X) _ 0 (Vli-22)

where a is given in (VII-20) and y is given in (VII-21), then for any

Uo(X) e Q(A) there exists a unique solution u(t,x) to (VII-18) strongly

2

continuous in t with respect to the L (_) norm with u(O,X)=Uo(X ). More-

over, the null solution is stable for B=0 and is asmyptotically stable

if B > 0 and in the later case the null solution is the only equilibrium

solution. The stability region is P(A) which, in some sense, can be

extended to the whole space L2(_).

It is seen from the above theorem that the major conditions imposed

on the coefficients of the operator L are conditions (VII-20) and (VII-22).

Notice that if c(x) is a non-positive function, then (Vli-22) is auto-
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matlcally satisfied. As a special form of (VII-18) we consider the

equation

n
_u B _u

W = i=l[  x--i (aiCx) '11 + c(x)
u Xe _ (VII-18)'

with the boundary conditions (VII-19). The following theorem is an

immediate consequence of theorem Vii-i4.

Theorem VII-4. Assume that the real-valued functions ai(X)

(i=l,2,...,n) and c(X) in equation (Vll-18)' are infinitely differen-

tiable in a domain _ containing _ where _ is a bounded open set in
O

Rn whose boundary B_ is sufficiently smooth. If, in addition, ai(x)

is positive for each i and c(X) is non-positive then all the results

in theorem VII-4 hold.

Proof. Consider (Vll-18)' as a special form of (Vll-18) with

aij(X)=ai(X ) for i=J and aij(x)=0 for i#j. Then the condition (Vll-20)

min min
= (X_ ai(X))>O which implies

is satisfied since by hypothesis a l_i_n

n n
n 2 2

i!j=l aij(X) _i_J = i=l_ ai(_)_i>-- a i=I_ $i "

The condition (VII-22) follows from the non-positivity of c(x). Hence

the results follow by applying theorem VII-4.

As an example of the above theorem, consider the equation

__ 2du = A u-c u (c real)
dt

where A is the Laplacien operator in _=R 3 with 8_ sufficiently smooth.

Then all the conditions in the above theorem are fulfilled since in this

2

case ai(x)__ = i for each i and c(X) = -c .

Just as in the case of one-dimensional space case, semi-linear

equations of the form
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n

_t
i,j=l

_u
--_. (aij(X) _-_.) + c(X)u + f(t,u)

I J

with the boundary conditions

X e _ (VII-23)

u(t,X) I_ = h(t,X') X' e _ _ (VII-24)

L2can similarly be treated where f is a function on R+ x (_) to L2(_).

For the sake of application, we state a theorem which is a direct

conseauence of theorems VI-14 and VII-4.

Theorem Vll-5. Suppose that the semi-llnear equation (Vli-23)

with tile boundary conditions

u(t,x') = 0 x' e _ (VII-24)'

possesses the same linear part as given in theorem VII-4. If for each

t $ 0, f is uniformly Lipschitz continuous in u with Lipschitz constant

k(t) where k(t) is a positive continuous function on R+ satisfying

sup k(t) < B with B given by (VII-22); and if for each u e D(A), f is
t>0

uniformly Lipschitz continuous in t with Lipschitz constant g(lluIl)

where g is a positive non-drecreasing function on R+. Then

(a) For any u (X) e _(A) there exists a unique solution of
o

(VII-23) with u(0,X)=Uo(X).

(b) An equilibrium solution (or a periodic solution), if it

sup k(t)<8.exists, is stable if sup k(t)=B ; and is asymptotically stable if t>0t_0 =

(c) A stability region of the equilibrium solution is V(A)

9

which can be extended, in some sense, to the whole space L'(_).

Remarks. (a) The conditions of uniform Lipschitz continuity

imposed on f can be weakened by assuming that f satisfies the conditions

(i), (ii) (or (ii)') and (iii) listed in section C of Chapter VI. (b)

The continuity condition on k(t) can be weakened to allow discontinuous
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at a finite number of points on R+ with k(t) properly defined at the

points of discontinuity (see the remarks following theorem Vl-7).

Example VII-6. As an example of the above theorem, consider

the partial differential equation

_u Au c 2 ku2 2 2
_-_= - u + (c,l,Cl,C 2 > O)

(12+u2)(Cl+C2t)

with the boundary conditions

(VII-25)

!

u(t,x') = 0 x e _

where A is the Laplacian operator in a bounded open set _ in R 3 and

u=u(t,X) with x=(Xl,X2,x3). The coefficients of A are aij(X)=6i,j,

the Kronecker delta, which implies that the condition (VII-20) is

satisfied with a = i since

3 3

[ a (x)q_j- Z 2
i,j=l 13 i=l Ei

2
Since c(X) = -c < 0, the condition (Vli-22) is satisfied. Hence

all the hypotheses in theorem Vll-4 are fullfilled with B=y+c 2. It

is easily shown that for any u e P(A) and s,t __>0 (see example Vll-3)

Ic2kl
I If(t'u)-f(s'u)I I < 2 Is-tl

c I

which shows that f is uniformly Lipschitz continuous in t with

Ic2kl
g(l lul I) = 2 " By using the relation (Vll-12), for each t > 0

c I

llf(t,u)-f(t,v)ll k (u2-v2)
= I_I IIX(22+u2)(_2+v2 I' =

= k _2 (u+v)2 dx)i/2
Cl+C2t ( / (u-v) 2(%2+u2)2(12+v2)2 <

<I
k% 2 i 1/2 k

Cl+Cmt IIyT<_2f(u-v)mdX)) = I%(cl+emt) I
IIuvll
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which implies that f is uniformly Lipschitz continuous with Lipschltz

constant

k(t) = I k
(Cl+C2t)I.

Hence if suPt>0k(t) = Ik/_ Cll =< B, all the results in theorem VII-6 follow.

In this particular case, f(t,0)=0 it follows that the null solution is

the only equilibrium solution and is asymptotically stable.

In case the boundary conditions are given by (VII-24) where

the function h(t,X') is a continuously differentiable function of t

on R + and twice continuously dlfferentiable in x on all the (n-l)-dimen-

slonal subspace of 5. On setting

v(t,x) = u(t,x) -h(t,x') X e 5, x' e B _,

equation (VII-23) reduced to

n

_v = _ (aij (×) _v
_t i,J=l[ _X-'-i _j) + C(X) v + fl(t,v) (X e n)

with the boundary conditions v(t,x') = 0 (x' a @ _) where

n

fl(t,v)= f(t,v+h)+ [ (x)BX--. (aij _.) + c(X)h -
i,j=l i

which is a known function since both f and h are given functions. It

follows that the nonhomogeneous boundary conditions can be reduced to

the homogeneous boundary conditions as for the one-dimensional case from

which theorem VII-6 may be used for the existence and stability of a

solution. Knowing the property of the solution v(t,x) in (VII-23)', the

property of u(t,x) of (VII-23) with boundary conditions (VII-24) can

be deduced.

(VII-23)'

(VII-26)
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VIII. CONCLUSIONS

A. The Objective of the Research

The objective of this dissertation is to establish some

criteria for the stability and the existence and uniqueness of

solutions for some linear or nonlinear, time-invariant or time-

varying operational differential equations (i.e., equations of

evolution) from which stability criteria for the corresponding

type of partial differential equations can be deduced. In the

case of linear time-invariant differential equation, a Lyapunov

stability theory for this type of equations in a real Banach space

is established. By using the linear semi-group theory and by the

introduction of semi-scalar product, the existence of a Lyapunov

functional is shown. In addition, necessary and sufficient condi-

tions for the _eneration of an equibounded or negative semi-group are

obtained from which the existence and stability of a solution can

be ensured.

In parallel to the linear semi-group theory, the introduction

of nonlinear semi-group theory enables the extension of linear differ-

ential equations to nonlinear operational differential equations. A

stability theory as well as the existence and uniqueness theory for

nonlinear differential equations in a complex Hilbert space are estab-

lished. Moreover, by introducing an equivalent inner product, the

same results hold in an equivalent Hilbert space. This fact makes

possible the construction of a Lyapunov functional through a sesqui-

linear functional which under suitable conditions defines an equivalent

inner product and from which a stability criteria is obtained. In the
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special case of semi-linear differential equations, the known results

on the linear part simplifies the criteria on a general nonlinear opera-

tor. Upon imposing some additional conditions on the nonlinear part

which is an everywhere defined function, stability and existence of a

solution are guaranteed. This type of equation is particularly useful

for some physical problems.

The development of the nonlinear time-invariant differential

equation is further extended to a more general type of nonlinear time-

varying operational differential =q_=L_vu._-- Criteria for _^L_L=existence,

uniqueness, stability and in particular, asymptotlcstabillty of a

solution, including the stability region, are obtained. The invariance

of the existence and stability property of this type of equation in two

equivalent Hilbert spaces is also proved. Particular attention has been

paid to the nonlinear non-statlonary operational differential equation.

Some special cases of this type of equation possess many possibilities for

applications to partial differential equations.

In order to apply the results obtained for the above mentioned

type of operational differential equations to partial differential equa-

tions, some second order stationary and nonstationary equations in one-

dimensional and in n-dlmensional spaces are considered. These applications

not only yield results on the type of partial differential equations under

consideration but also illustrate some steps in the formulation of a linear

operator in a Hilbert space from a formal partial differential operator.

These steps may be needed in solving more general partial differential equa-

tions. In the following section, a brief description of the main results

in this research are given.
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B. TheMminResults

i. The Existence of a LyapunovFunctional

The linear time-invariant operational differential eauations

are investigated in Chapter IV. Through the use of an equivalent

semi-scalar product_ the existence of a Lyapunovfunctional in a Banach

spaceis proved in theoremsIV-7 and IV-8; and in terms of this Lyapunov

functionalD necessary and sufficient conditions on A to generate an

equiboundedand negative semi-group are established in theorems IV-f1

and IV-12 respectively. With these additional results_ the stability

study of the linear time-invariant equations by using semi-group or

group theory in a Banachspace or a Hilbert space is (in a sense) com-

pleted. In addition to the above results_ someinteresting properties

of semi-scalar product in terms of a semi-group are given in theorems

IV-9 and IV-10D the proofs of which are based on an useful lemma(lemma

IV-5) which is proved through the construction of a continuous linear

functional.

2. Nonlinear Time-Invariant Operational Differential Equations

Linear time-invariant differential equations have been extended

in Chapter V to nonlinear differential equations with the underlying

spacea complexHilbert space. By introducing the concept of nonlinear

semi-groupspstability criteria in terms of the infinitesimal generator

of a nonlinear contraction semi-group are given in theoremV-2 and is

extendedto theoremV-3 for asymptotic stability. Theproof of theorem

V-3 is basedon a very useful lemmawhich is shownas lemmaV-5. These

two theoremsare fundamental for the developmentof stability theory.

Moreover_the semi-group on _(A) generated by A in theoremsV-2 and V-3
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are extended into the closure of D(A) as is shown in lemma V-3. The

inner product with respect to _llch the nonlinear operator A is dissipa-

tive required in theorem V-2 can be replaced by an equivalent inner

product which is shown in theorem V-4. In this case, the semi-group

generated by A is not necessarily contractive in the original space.

However, from the stability point of view, there is no loss whatsoever

of the stability property. This fact enables one to define a Lyapunov

functional through a sesquilinear functional so that stability property

can be determined by the construction of a Lyapunov functional. These

results are obtained in theorems V-7 to V-9. In addition to the above

results which are directly related to stability theory, lemma V-6, lem_a

V-10 and its corollary all have their own values. Moreover, theorem V-6

gives the necessary and sufficient conditions for the existence of an

inner product equivalent to the given inner product of a complex Hilbert

space. It should be remarked that theorem V-5 is an alternative form

of theorems V-2 and V-3.

As a special case, the semi-linear equation is discussed with

the underlying space a real Hilbert space. If the linear part is the

infinitesimal generator of a seml-group of class Co, then the existence,

uniqueness, stability or asymptotic stability of a solution are established

in theorems V-II, V-12 and their corollaries. Moreover, under some weaker

conditions than those required in theorem V-12, the uniqueness of an equili-

brium solution is established in theorem V-13 and a special case of the

null solution is given in its corollary. This theorem is contributed in

a large part by Dr. Vogt during the discussion between him and the author.

In case the linear part is a closed operator, a general theorem for the

existence, uniqueness and stability property is established in theorem V-15,
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and in the special case of a self-adjolnt operator the results are

given in theorem V-16. Finally, theorem V-17 shows that theorem V-16

remains true if the inner product of H is replaced by an equivalent

inner product.

3. Nonlinear Time-Varying Operational Differential Equations

The nonlinear tlme-lnvarlant differential equations are further

extended in Chapter VI to the nonlinear time-varying differential

equations. In parallel to the development of Chapter V, a stability

criterion for the general equations of evolution is established in

theorem VI-2. Through the use of lemma VI-3, theorem Vl-2 is extended

to an equivalent Hilbert space as is shown in theorems VI-3 and Vl-4

for the stability and asymptotic stability resepctively. By defining

a Lyapunov functional through a sesquilinear functional, theorems

VI-3 and VI-4 are, in fact, equivalent to theorem VI-5. Additional

properties are stated as corollaries I and 2.

An important special form of nonlinear time-varying equations

is the nonlinear nonstationary differential equation which is also an

extension of the nonlinear equation discussed in Chapter V. Theorems

VI-6 and VI-7, which are very useful to the applications of concrete

nonlinear partial differential equations, have established general criteria

for the stability and asymptotic stability, respectively, of a solution.

Another special form of the nonlinear tlme-varying equations is

the semi-linear equations. In the general case where the linear part

is a time-varying unbounded operator, criteria for the stability and asymp-

totic stability of a solution are given in theorems VI-8 and VI-9 respect-

ively. In case the linear part is time-invarlant and if it is the

infinitesimal generator of a semi-group of class Co, theorems VI-10 and VI-II
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give conditions for the existence, uniquenessand stability or asymptotic

stability, respectively, of a solution. TheoremVI-12 showsthe unique-

ness of an equilibrium solution; if it is a closed unboundedlinear operator,

a general theorem is shownin theoremVI-13; whenit is a self-adjoint

operator either in the original Hilbert s paceH or in an e_uivalent Hilbert

space Ill, conditions imposedon it turn out to be particularly simple,

and these results are shownin theoremsVI-14 andVI-15 which are very

useful for the application of a class of partial differential equations.

Finally, if the linear part is a boundedoperator on H, the semi-llnear

equations is reduced to an ordinary differential equation. Results on this

type of equations are given in theoremsVi-i6 to Vi-i9 which are direct

consequencesof the semi-linear equation.

4. Applications

Applications of the results developed for operational differential

equations to partial differential equations are given in Chapter VII in

which stability criteria for a class of secondorder partial differential

equations are established and are given in theoremsVII-2 through VII-6.

Theseapplications and special examplesalso illustrate somesteps for

solving the stability problem of certain partial differential equations

through the use of the results f or operational differential equations.

C. Some Suggested Further Research

The stability theory developed in this research can be extended in

two broader directions, namely; theoretical extensions to some more general

function spaces such as Banach space on the one hand, and applications to

the class of nonlinear partial differential equations which can be reduced

to the form of operational differential equations on the other. As it has
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been shown in Chapter IV, that the stability criteria of linear time-

invariant operational differential equations in Hilbert spaces can be

extended to Banach spaces by the introduction of semi-scalar product.

This suggests that through the use of semi-scalar product it might be

possible to extend the stability and existence theory for nonlinear

operational differential equations from Hilbert spaces to Banach spaces.

It is believed that this extension is possible for some class of Banach

spaces which are not Hilbert spaces. On the other hand, the results

obtained for the operational differential equations can be used for a

large class of nonlinear partial differential equations which are not

limited to semi-linear equations. The formulation of a nonl_near operator

in a suitable Hilhert space from a given nonlinear partial differential

operator and the associated abstract operator possessing the desired

property both need further investigation. One of the immediate exten-

sions along this line is the formulation of a nonlinear partial differ-

ential operator of elliptic type as a nonlinear operator in some suitable

function spaces such that this nonlinear operator has the required pro-

perty to ensure the stability of a solution of the parabolic-elliptic

partial differential equations. Moreover, applications to nonlinear wave

equations and to Schrodinger equations also need additional attention.
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